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Abstract. This paper addresses the problem of finding the number,K, of phases present at equilibrium
and their composition, in a chemical mixture of ns substances. This corresponds to the global
minimum of the Gibbs free energy of the system, subject to constraints representing mb independent
conserved quantities, where mb = ns when no reaction is possible and mb 6 ne + 1 when reaction
is possible and ne is the number of elements present. After surveying previous work in the field and
pointing out the main issues, we extend the necessary and sufficient condition for global optimality
based on the “reaction tangent-plane criterion”, to the case involving different thermodynamical
models (multiple phase classes). We then present an algorithmic approach that reduces this global
optimization problem (involving a search space of mb(ns � 1) dimensions) to a finite sequence of
local optimization steps in K(ns � 1)-space, K 6 mb, and global optimization steps in (ns � 1)-
space. The global step uses the tangent-plane criterion to determine whether the current solution
is optimal, and, if it is not, it finds an improved feasible solution either with the same number of
phases or with one added phase. The global step also determines what class of phase (e.g. liquid or
vapour) is to be added, if any phase is to be added. Given a local minimization procedure returning
a Kuhn–Tucker point and a global optimization procedure (for a lower-dimensional search space)
returning a global minimum, the algorithm is proved to converge to a global minimum in a finite
number of the above local and global steps. The theory is supported by encouraging computational
results.

Key words: Chemical and phase equilibrium, convexity, Gibbs free energy, Global optimization,
Non-convex optimization, Tangent-plane criterion.

1. Introduction

A mixture of substances may separate into different phases. The composition, i.e.
the proportions of the different substances present, is the same throughout a phase.
If no reactions are possible between the different substances the problem is called
the phase equilibrium problem (PEP), and if reactions are possible the problem is
known as the chemical equilibrium problem (CEP).

The existing techniques for the PEP and CEP divide into two classes (see Smith
and Missen, 1982). The first concentrates on solving a set of nonlinear equations
arising from the stationarity conditions for a thermodynamic function and the
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326 KEN McKINNON AND MARCEL MONGEAU

material and charge balance equations. In the second approach the thermodynamic
function is minimized. When the system temperature and pressure are constant,
this function is the Gibbs free energy (GFE) and the problem is referred to as
the isothermal chemical and phase equilibrium problem. Furthermore, once an
algorithm for this GFE minimization problem is developed, it can be modified
to handle other types of equilibrium problems: the isenthalpic, isentropic and
isochoric phase equilibrium problems (see, e.g., Brantferger, 1991).

In this paper we shall use the minimization approach: we consider a mathemat-
ical formulation involving the minimization of a non-convex objective function
(the GFE), subject to material and charge balance equality constraints and non-
negativity constraints. We assume the pressure and temperature of the system to be
fixed. We consider PEPs and CEPs which involve different thermodynamic func-
tions to model the different classes of phase that may be present at equilibrium. A
phase class, as introduced by Smith et al. (1993), is characterized by the chemical
potential function used to model it. For example, vapour phase and liquid phase
may be modeled as different phase classes. We will extend the proof of the “reac-
tion tangent-plane criterion” of Jiang et al. (1995) to the case involving different
phase classes. Note however that we shall restrict this paper to class models where
each substance can be present.

The tangent-plane criterion (for the PEP and with a single phase class) was
introduced by Gibbs (1873a, b) and proved by Baker et al. (1982). Peng (1989)
illustrates the applicability of a tangent-plane criterion for binary systems (i.e.
involving two substances and two phases) in the PEP involving multiple-phase-
class models. Smith et al. (1993) extends the criterion to the case of the CEP with
multiple-phase-class models. Jiang et al. (1995) provide a proof of this result in
the case of a single-phase-class model. The formulation used for the CEP in the
current paper is different from that used in Jiang et al. (1995): we shall present in
this paper a unified geometric interpretation for the PEP and the CEP.

The generic algorithm we present extends, for example, the approach in
Michelsen (1982a, b) which also treats the PEP in a stepwise manner. Michelsen
uses alternately a local method to obtain a stationary point of the GFE corresponding
to a given number of phases, and a stability test, derived from the tangent-plane-
criterion necessary and sufficient global-optimality condition of Baker et al. (1982),
to decide whether an extra phase should be added. He however uses a local equa-
tion solving method to find a stationary point of the tangent distance function and
makes use of several initial estimates in an attempt to determine whether a phase is
stable. Also, Michelsen concentrates on PEPs involving a single phase class. In our
approach different thermodynamic models for the different phase classes which
may be present at equilibrium are considered. Moreover, the way we make use of
the tangent-plane criterion is different. We use the tangent-plane criterion either to
add an extra phase, to improve the Gibbs free energy without changing the number
of phases, or to establish global optimality. Because of its local nature, Michelsen’s
algorithm may not succeed in locating the global minimum, whereas the generic
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algorithm we present is proved to converge to a global minimum in a finite number
of local and global steps. The local and global optimization algorithms to be used
in the generic algorithm are not specified in this paper: a variety of combinations of
methods could be used. At the end of this paper we cite encouraging results from
an implementation which uses interval-analysis techniques for the global stability
step.

Other work on the minimization of the GFE includes that of Gautam and Sei-
der (1979). They compare the performance of the Newton-like Rand and NASA
methods, which require removal of phases (and variables) to avoid singular matri-
ces when the amount of a substance in a phase tends towards zero, with Wolfe’s
quadratic programming algorithm. By making use of the phase stability analysis,
Wolfe’s algorithm circumvents a problem of Rand and NASA methods: that of
getting prematurely trapped with too few phases. Wolfe’s quadratic programming
algorithm however does not eliminate the possibility of convergence to a local min-
imum. The algorithm presented in Nghiem and Li (1984) is similar to Michelsen’s
except for the fact that a “quasi-Newton successive-substitution” method is used
for the local-minimization step. Clasen (1984) gives an algorithm that parallels
the generalized Benders decomposition algorithm of Geoffrion (1972). His relaxed
master problem, used to select values for the number of moles in each phase,
is a linear programming problem. The dual of the problem obtained by fixing the
number of moles in each phase, is then solved as a subproblem to obtain the compo-
sitions. However, Clasen’s algorithm is described for the ideal GFE minimization
problem formulation in which the objective function is convex, and he assumes the
number of phases present at equilibrium to be known a priori. The second-order
method presented in Trangenstein (1987) handles the poorly-scaled minimization
problems associated with mixtures near bubble points, dew points and critical
points (see Smith and Van Ness, 1987). It also addresses the problem of avoiding
convergence to trivial solutions (i.e., solutions containing a spurious phase, which
has the same compostion as another phase), and it attempts to maximize the accu-
racy in the solution. More specifically, in order to address the poor scaling of the
minimization problem and the indefiniteness of the Hessian, he adapts a modified
Newton’s method (as in Dennis and Schnabel, 1996) to the particular structure of
the phase equilibrium problem and to the stability-analysis optimization subprob-
lem involved in determining the number of phases at equilibrium. He however
confines his numerical methods to the search for local minima, and he deals with
phase equilibrium problems involving at most two phases. Sun and Seider (1992)
presents a homotopy-continuation algorithm for the phase equilibrium problem.
Floudas and Visweswaran (1990, 1993) presents the GOP (Global OPtimization)
algorithm, which is related to the resource decomposition algorithm of Wolsey
(1981). In McDonald and Floudas (1995a) the GOP algorithm is applied to numer-
ous examples for which the liquid phase is modeled by the NRTL equation and the
vapour phase is assumed to be ideal. The GOP algorithm decomposes the original
problem into primal and relaxed dual subproblems that provide upper and lower
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bounds on the global optimum, and makes use of branch and bound. Finally, the
introduction of McDonald and Floudas (1995a) constitutes a good survey of global
optimization for the chemical and phase equilibrium problem.

The current paper divides into six parts. Following this introduction, we formu-
late the Gibbs free energy minimization problem and point out the main issues in
this particular global optimization problem. In Section 3, we extend the necessary
and sufficient condition for global optimality based on the “reaction tangent-plane
criterion”, to the case involving multiple-phase-class thermodynamic models, pay-
ing special attention to the issue of the number of phases that exist at equilibrium
being unknown a priori. In Section 4 we present an algorithmic approach, the
GILO method, that reduces the global optimization problem of minimizing the
GFE to a finite sequence of local optimization steps and global optimization steps
in a low-dimensional space. The global (phase stability) step uses the tangent-plane
criterion to determine whether the current solution is optimal, and, if it is not, it
finds an improved feasible solution with at most one extra phase. When the global
step proves that the solution is not optimal, it also determines what class of phase
(e.g. liquid or vapour) is to be added or exchanged with an existing phase. We show
that the search can be restricted to solutions involving, in the case of the PEP, no
more phases than the number of substances in the mixture, and, in the case of the
CEP without charge, no more than the number of elements. The algorithm is proved
to converge to a global minimum in a finite number of the above local and global
steps. In Section 5, we discuss implementation issues and we cite encouraging
computational experiments. We draw conclusions in Section 6.

Note that throughout the paper the superscript “+” will denote globally optimal
solutions and the superscript “*” will denote local optima or Kuhn–Tucker points.

2. The Gibbs free energy minimization problem

Assume we have a mixture of ns substances and that there are a finite number �
of phase classes with corresponding thermodynamic models for their GFE. The
number of phases, denoted by K , required to reach equilibrium is not known a
priori, but it will be shown later not to exceed mb, where mb is the number of
independent balance constraints modeling conserved quantities.

Let fzikg
ns
i=1 be the amount of each substance i in each phase k, 1 6 k 6 K .

Let us denote the proportion of phase k which is substance i by xik. This is given
by

xik �
zikPns
j=1 zjk

i = 1; 2; . . . ; ns; k = 1; 2; . . . ;K: (1)

The GFE is given by

g(K; t; z) �
KX
k=1

nsX
i=1

zik�itk(x1k; . . . ; xnsk); (2)
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where tk 2 � , 1 6 k 6 K , and �i� : Rn ! R is the chemical potential of substance
i in a phase of class �, a nonlinear function of composition whose form depends
on the thermodynamic model chosen to describe a phase of class �. In fact �i� also
depends on the system temperature and pressure but this is not considered here as
in this paper we shall be concerned with computing the equilibrium compositions
at specified pressure and temperature.

The simplest model for the PEP, which is referred to as the ideal case, yields a
GFE function, g(K; t; �), which is convex (see Lemma 8.7D of Shapiro and Shapley,
1965). Other models include the Redlich/Kister expansion, the Margules equations
and the van Laar equations, which are all special cases of a general treatment
based on rational functions (ratios of polynomials), and the Wilson model, the
NRTL (Non-Random-Two-Liquid) equation, the UNIQUAC (UNIversal QUAsi-
Chemical) equation, and the UNIFAC method (see McDonald and Floudas, 1995a;
Smith and Van Ness, 1987). In petroleum reservoir simulation, the Peng–Robinson
equation of state, Peng and Robinson (1976), is commonly used to describe the
behaviour of hydrocarbon phases.

In the PEP there are no reactions so the amount of each substance is conserved.
There are therefore q = ns conserved quantities and the following linear balance
constraints hold.

KX
k=1

zik = b0i; i = 1; 2; . . . ; q; (3)

where b0i denotes the total amount of substance i present. In the CEP, the individual
substances are not conserved but may react together to form other substances.
However the total amount of each element present is conserved. Also if ionic
substances are possible then the constraint that the total charge is conserved is also
required. These constraints give rise to linear balance equations of the following
form:

KX
k=1

nsX
i=1

a0jizik = b0j; j = 1; 2; . . . ; q: (4)

Here q = ne if there is no charge constraint, and q = ne + 1 if there is a charge
constraint. If constraint j is an element-balance constraint, then the coefficient a0ji
denotes the amount of element j per unit amount of substance i, and b0j is the
total amount of element j in the system. If constraint j corresponds to the charge
constraint, then a0ji denotes the amount of charge in unit amount of substance i and
coefficient b0j is 0.

LetZ be the vector whose ith component,Zi, gives the total amount of substance
i, i.e. Zi =

PK
k=1 zik. Then (4) can be rewritten equivalently as

nsX
i=1

a0jiZi = b0j ; j = 1; 2; . . . ; q:
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For the CEP, let A0 denote the q � ns matrix with (ji)th entry a0ji, and for
the PEP, let A0 be the ns � ns unit matrix. The (global) optimization problem
corresponding to either the PEP or CEP can now be written as:
P 0 :

min
K;t;z;Z

g(K; t; z)

subject to A0Z = b0; (5)
KX
k=1

zik = Zi; i = 1; 2; . . . ; ns; (6)

z > 0; (7)

tk 2 �; k = 1; 2; . . . ;K; (8)

K 2 N
+ :

The non-negativity constraint (7) is a consequence of the definition of zik.
Throughout the paper we assume that the only substances included in the model

are those which could occur at a positive level in some feasible solution. By taking
a convex combination of such solutions for each substance, it follows that there
exists a feasible solution in which all substances are present, i.e.,

there exists �Z > 0 such that A0 �Z = b0:

The following technique can be used to detect whether a model contains substances
which cannot occur in any feasible solution, to eliminate such substances when
they occur, and also to find a feasible solution in which all substances are present
at a positive level. Solve the following LP problem, P feas, whose objective is to
maximize the minimum amount of any substance.
P feas :

max
Z;�

�

subject to � 6 Zi; i = 1: . . . ; ns; (9)

A0Z = b0;

Z > 0:

If P feas is infeasible, then there is no combination of substances in the model which
can satisfy the balance constraints, so the problem definition is inconsistent. If a
positive objective value is found, then all substances can occur at the positive level
given in that solution. Otherwise the optimal objective must be zero. At least one
substance will have a non-zero shadow price in (9). All such substances can be
eliminated and the LP repeated for the reduced problem until a positive objective
is found.

A globally optimal solution of P 0 corresponds to the true equilibrium solution
(i.e. the one found in nature). Later we shall see that limiting the number of phases
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K to mb, where mb is the rank of A0, does not exclude the optimal solution. For
P 0 with K and t fixed, g is a continuous function of z, so the infimum is achieved.
Because only a finite number of K and t need be considered, the infimum is
achieved for problem P 0, so the minimum is well defined. For the PEP mb = ns,
for the CEP without charge constraint mb 6 ne, and for the CEP with charge
constraint mb 6 ne + 1.

There are several difficulties in computing a global minimum of the GFE. First,
the number of phasesK+, and the class t+k of each of these K+ phases, at which g
achieves a global minimum are usually not known a priori. Moreover, for fixed K
and fixed t 2 �K , since the GFE function may be non-convex in the non-ideal case,
a descent algorithm may converge to a local minimum which is not global. Another
difficulty is that even with K = K+, a descent algorithm may converge to a point
at which the total amount in a phase is zero, or at which there is a spurious phase
(i.e. the proportions of the substances in two phases k and l, k 6= l are identical, so
xik = xil for 1 6 i 6 ns). There are numerical difficulties in the neighbourhood
of such a point (see Trangenstein, 1987). The chemical potentials are generally
assumed to satisfy the Gibbs–Duhem equation (see Smith and Van Ness, 1987) and
to have a logarithmic singularity when a substance is removed from an existing
phase. Also, even the case in which both K+ is known and the GFE function is
convex, numerical difficulties can arise due to the unboundedness of the gradient
at points where the amount of some substance in a phase is null. Further numerical
difficulties arise for some values of pressure and temperature. For mixtures near
bubble points and dew points one of the phases becomes small and the Hessian of the
objective function becomes nearly singular. A similar difficulty occurs near critical
points, because at these points two phases have nearly identical compositions.
Trangenstein (1987) discusses in detail the poor scaling of the Hessian matrix in
the GFE minimization problem and presents a (local) optimization method based
on the modified Newton method, with adaptations to suit the particular structure
of the phase equilibrium problem. A major attraction of the approach taken in
this paper is that most of these numerical difficulties do not occur in the global
optimization part of the algorithm but are dealt with in the local optimization part,
for which well-developed techniques are available.

The chemical and phase equilibrium problem has two features that make it
atypical of many global optimization problems. Firstly, the number of variables zik
present is not known a priori. Secondly, the aim is not so much obtaining a solution
with an objective value which is close enough to the optimal objective value (as is
usually the case when the objective function has an economic interpretation), but
rather to find a solution which itself is close enough to the optimal solution (so that
the number of phases, their class and their composition at equilibrium are correctly
determined and thus correspond to the equilibrium found in nature).

Note finally that problems in chemical and phase equilibria often involve
instances for which ns 6 10 and K+ 6 3. In many of the problems reported
in the literature (see Ammar and Renon, 1987; Dluzniewski and Adler, 1972;
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Floudas and Pardalos, 1987; Gautam and Seider, 1979; McDonald and Floudas,
1994b, 1995a; Mehra et al., 1983; Peng, 1989; Sun and Seider, 1992; Trangenstein,
1987; Xiao et al., 1989) ns is as small as 2 or 3. Sometimes however these small
problems must be solved very rapidly. For instance, an important application of
phase equilibria is in the modeling of petroleum reservoir fluid flow (see Trangen-
stein, 1987). Within a numerical reservoir simulator, phase equilibrium is to be
determined at each time step and for each cell in a grid partitioning the reservoir.

3. The reaction tangent-plane criterion for multiple-phase-class models

The problem P 0 will now be transformed to the form P below by changing the
variables to the total amounts in each phase and the composition of each phase,
and by eliminating redundant constraints. Let yk denote the total amount in phase
k, so

yk �
nsX
i=1

zik: (10)

From (10) and (1) it follows that

zik = ykxik: (11)

Assume now that there exists a vector w such that

wTA0 = ens � (1; 1; :::; 1) 2 R
ns ;

wT b0 = 1:

Note that for fixed K and fixed compositions xik, the objective function (2) and
the left-hand side of conservation constraints (3) and (4) are linear functions of the
zik, and that the other constraints are all non-negativity restrictions. It follows that
if z�ik and x�ik give an optimal solution for right-hand side b0, then, for any � > 0,
�z�ik and x�ik give an optimal solution for right-hand side �b0. Hence, provided
wT b0 > 0 there is no loss in generality in assuming that the total amount present is
normalized so that wT b0 = 1.

For the PEP, A0 is the identity matrix so the vector w consisting entirely of
ones has the required property. For the CEP, we choose to measure the amounts of
substances and of elements in units of mass. It then follows that the coefficient a0ji,
corresponding to element balance constraint j, is the mass of the element associated
with row j in unit mass of substance i. The sum over a column of all elements
corresponding to the element-balance rows is then unity. Hence, a w consisting of
ones in all element-balance rows and a zero in the charge balance row, if it exists,
has the desired property.
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By performing row operations on Equations (5) we can therefore obtain the
equivalent equations2

64
Â

1; 1; :::; 1
0

3
75Z =

2
64
b̂

1
0

3
75 ;

where Â is composed ofmb�1 linearly independent rows of A0 and b̂ is composed
of the corresponding rows of b0.

Now using the equation with unit coefficients to eliminate Zns from the first
mb � 1 rows gives the equivalent equations2

4 A 0
1; 1; :::; 1 1

0 0

3
5Z =

2
4 b1

0

3
5 ; (12)

where A is the m � n matrix whose ith column is Âi � Âns , b = b0 � Âns ,
m = mb � 1, and n = ns � 1 (when C is a matrix, Cj denotes its jth column).
The row operations done to transform Equations (5) to Equations (12) are rank
preserving, so it follows that A is of rank mb � 1 = m, i.e. full rank.

For the development of the theory it is convenient to work in the reduced space
obtained by eliminating the variables for one of the substances, say substance ns.

Equations (12) are equivalent to the equations
nX
i=1

AiZi = b;

nsX
i=1

Zi = 1:

Substituting for Zi using (6) and (11) gives the equivalent equations
nX
i=1

Ai

KX
k=1

ykxik = b;

nsX
i=1

KX
k=1

ykxik = 1;

which, because by Definition (1)
Pns

i=1 xik = 1, are equivalent to

KX
k=1

ykAxk = b;

KX
k=1

yk = 1; (13)

where xk 2 �X , and (recall n = ns � 1)

�X � fx 2 R
n :

nX
i=1

xi 6 1; xi > 0g:

Now for vi > 0; i = 1; :::ns where
Pns

i=1 vi = 1 define

f̂�(v1; :::; vns) =
nsX
i=1

vi�i�(v1; :::; vns); and

f�(v) = f̂�(v1; :::; vn�1; 1�
nX
i=1

vi) for v 2 �X: (14)
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Function f̂� defined over the full ns-space, and f� defined over the reduced n-space
give the GFE of unit amount of a single phase of phase class �. For the true GFE
and the common functions used to model it, f̂� is twice continuously differentiable
and

lim
vi!0+

@f̂�

@vi
= �1; for all 1 6 i 6 ns:

This implies (see Jiang et al., 1995) that provided all substances can be present
(we are assuming we have eliminated any which cannot by, for example, using
problem P feas), any phase that is present at equilibrium (i.e. has yk > 0) has a
non-zero amount of every substance in the phase. We can therefore replace �X with
its interior, X , without eliminating the optimal solution. From this observation
and (2), (11), (13) and (14), it follows that problem P 0 is equivalent to the problem
P :

min
K;t;Y

F (K; t; Y ) �
KX
k=1

ykftk(xk)

subject to
KX
k=1

ykAxk = b ; (15)

KX
k=1

yk = 1 ; (16)

yk > 0; k = 1; 2; . . . ;K ; (17)

xk 2 X; k = 1; 2; . . . ;K ; (18)

tk 2 �; k = 1; 2; . . . ;K ;

K 2 N
+ ;

where Y = (y1; . . . ; yK ; xT1 ; . . . ; xTK) 2 R
K(n+1) , A is an m � n real matrix of

rank m, m = mb � 1, n = ns � 1, b 2 R
m , � is a finite index set, and, for

k = 1; 2; . . . ;K , tk 2 � , yk 2 R.
Note that with this approach problem P represents both the PEP and the CEP.

This is in contrast to the work of Jiang et al. (1995) who use a different formulation
for the CEP: the form used for both the PEP and the CEP in the current paper is
the same as that used in Jiang et al. (1995) for the the PEP.

Let PK�

t� denote problem P in which K is fixed to a positive integer K� and
t� 2 �K

�

is fixed, and let FK�

t� : RK
� (n+1) ! R be the corresponding objective

function, so FK�

t� = F (K�; t�; Y �). For a given (K�; t�; Y �) define

J� � fk : 1 6 k 6 K�; y�k > 0g:

The Kuhn–Tucker (KT) conditions for PK�

t� are stated in the following Lemma.

LEMMA 3.1. Y � is a Kuhn–Tucker point for PK�

t� if and only if there exist multi-
pliers � 2 R

m and � 2 R such that
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(i) ft�
k
(x�k) > �TAx�k + � (= ��(x�k)) for all 1 6 k 6 K�, with equality if

k 2 J�,
(ii) rft�

k
(x�k)

T = �TA (= (r��)T ) for all k 2 J�,

(iii) Y � is feasible for PK�

t� ,
where by definition ��(x) = �TAx+ �.

Given any k 2 J�, the affine function �� can be written in the form

��(x) = ft�
k
(x�k) +rft�k(x

�

k)
T (x� x�k):

Proof. Parts (i), (ii) and (iii) are the standard KT conditions. The form of �� is
obtained by substituting for �TA and � using parts (i) and (ii). E

This lemma has the following geometric interpretation. At a KT point Y � for
problem PK�

t� , there exists an n-dimensional hyperplane fx : ��(x) = 0g which
is not above ft�

k
at x�k for any k, 1 6 k 6 K�, and is tangent to ft�

k
at the points x�k,

where y�k > 0.

LEMMA 3.2. Assume ( ~K; ~t; ~Y ) and (K�; t�; Y �) are feasible for P . Let �� :
R
n ! R be an affine function of the form ��(x) = �TAx+�, where � 2 R

m and
� 2 R, and assume that ft�

k
(x�k) = ��(x�k) for all k 2 J�. Then

FK�

t� (Y �) =

~KX
k=1

~yk�
�(~xk) = �T b+ �:

In particular the above relation holds if Y � is a KT point for PK�

t� with �� the
corresponding affine function defined in Lemma 3.1.

Proof. If (K; t; Y ) is feasible for P then by (15) and (16)

KX
k=1

yk�
�(xk) =

KX
k=1

yk(�
TAxk + �)

= �T
KX
k=1

ykAxk + �

KX
k=1

yk = �T b+ �:

By the definition of �� and the fact that ( ~K; ~t; ~Y ) and (K�; t�; Y �) are feasible

FK�

t� (Y �) =
K�X
k=1

y�kft�k(x
�

k) =
K�X
k=1

y�k�(x
�

k) = �T b+ � =

~KX
k=1

~yk�
�(~xk):

Finally if Y � is a KT point for PK�

t� then, by Lemma 3.1 (i) and (iii), �� and Y �

have the properties required by this lemma. E

The above two lemmas are adaptations of Corollary 1 of Jiang et al. (1995) and
Lemma 2 of Jiang et al. (1995), modified to allow for the different phases classes
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and paying attention to the fact that we may have K� 6= ~K . The proof of the next
theorem can be obtained by adapting that of Theorem 3 of Jiang et al. (1995), where
some care has to be given to the class of each phase involved and where Lemma 2
of Jiang et al. (1995) should be replaced by Lemma 3.2 above in order not only to
deal with the case involving multiple-phase-class models but also so as to address
explicitly the issue of K being unknown in P (recall that Lemma 3.1, which is also
needed, is valid for fixed K). A constraint qualification (see Theorem 1 of Jiang et
al., 1995) is also required to show that all local minima occur at KT points. This
relies on A being of full rank, which it is by the construction leading to (12).

THEOREM 3.1. Let t+ 2 �K
+

and Y + 2 R
K+ (n+1), for some positive integer

K+. Then, (K+; t+; Y +) is a global minimum for P if and only if Y + is a KT
point for PK+

t+
and

f�(x)��+(x) > 0; for all x 2 X and all � 2 � , (19)

where fx : �+(x) = 0g is the tangent hyperplane corresponding to (K+; t+; Y +),
as described by Lemma 3.1.

Note that to extend the local conditions given in Lemma 3.1 to the global
conditions, we need to specify that �� must not be above f� for any � 2 � or any
x 2 X , rather than just at those phase classes t�k and compositions x�k occurring in
the solution (K�; t�; Y �).

We now introduce a lemma and theorem which clarify the geometric interpreta-
tion of the problem. They deal with the nonsmooth function fM : X ! R, which
gives the minimum GFE of a single phase of given composition,

fM(x) � min
�2�

f�(x):

LEMMA 3.3. Let (K+; t+; Y +), be a global minimum for P , K+ 2 N
+ , t+ 2

�K
+

, and Y + 2 R
K+ (n+1), and fx : �+(x) = 0g be the corresponding tangent

hyperplane described by Lemma 3.1. Then we have that, at the points fx+k : 1 6
k 6 K+ and y+k > 0g, fM is differentiable and fx : �+(x) = 0g is tangent to
fM .

Proof. Let k be such that 1 6 k 6 K+ and y+k > 0. We have

fM(x+k ) = min
�2�

f�(x
+
k ) 6 f

t
+

k
(x+k ) = �+(x+k ); (20)

by Lemma 3.1. We show that the inequality in (20) is in fact an equality. Suppose
otherwise, then there exists a � 2 � such that f�(x

+
k ) < �+(x+k ). This contradicts

Theorem 3.1. Hence,

fM(x+k ) = �+(x+k ): (21)
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Furthermore, let � > 0 and d 2 R
n . Using (21) we obtain

fM(x+k + �d)� fM(x+k ) = min
�2�

f�(x
+
k + �d)��+(x+k )

> min
t2�

�+(x+k + �d)��+(x+k ); (22)

since, by Theorem 3.1, f�(x) > �+(x) for all x 2 X and � 2 � . On the other
hand, by (20) and (21) imply fM(x+k ) = f

t
+

k
(x+k ), so we have

fM(x+k + �d)� fM(x+k ) = min
�2�

f�(x
+
k + �d)� f

t+
k
(x+k );

6 f
t
+

k
(x+k + �d)� f

t
+

k
(x+k ): (23)

Using (22), (23), dividing by � and passing to the limit, we obtain

dTr�+
6 lim

�!0+

fM (x+k + �d)� fM(x+k )

�
6 dTrf

t+
k
(x+k );

since �+ is affine and f
t
+

k
is differentiable. Also, by definition of �+,

dTrf
t
+

k
(x+k ) = dTr�+:

Thus, the above limit exists and is equal to dTr�+. This means that the directional
derivative of fM at x+k in the direction d is given by dTr�+. Whence, fM is
differentiable at x+k and rfM(x+k ) = r�+. E

We thus obtain the following characterization of global minima for P in terms of
the function fM .

THEOREM 3.2 (Tangent-Plane Criterion). Let K+ 2 N
+ , t+ 2 �K

+

, and Y + 2

R
K+ (n+1).

If (K+; t+; Y +) is a global minimum for P , then Y + is a KT point for PK+

t+

and

fM(x)��+
M (x) > 0; for all x 2 X , (24)

where fx : �+
M (x) = 0g is the tangent hyperplane corresponding to (K+; t+; Y +),

as described by Lemma 3.3.
Conversely, if Y + is a KT point for PK+

t+
for some K+ and t+ 2 �K

+

and

fM(x)��+(x) > 0; for all x 2 X , (25)

where fx : �+(x) = 0g is the tangent hyperplane corresponding to (K+; t+; Y +)
as described by Lemma 3.1, then (K+; t+; Y +) is a global minimum for P and
�+ = �+

M .
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Proof. Let (K+; t+; Y +) be a global minimum for P and let x 2 X . Then by
Theorem 3.1, Y + is a KT point for PK+

t+
and f�(x) ��+(x) > 0, for all � 2 � .

By Lemmas 3.1 and 3.3, �+
M = �+. Hence, we have f�(x)��+

M(x) > 0, for all
� 2 � . In particular, for t = argminff�(x) : � 2 �g, we have fM (x)��+

M (x) > 0.
Now let Y + be a KT point for PK+

t+
for some t+ and K+, and assume that (25)

holds. Let ( ~K; ~t; ~Y ), such that ~K 2 N
+ , ~t 2 �

~K , and ~Y 2 R
~K (n+1), be a feasible

point for P . We have

F (K+; t+; Y +) � FK+

t+ (Y +) =

~KX
k=1

~yk�
+(~xk); by Lemma 3.2,

6

~KX
k=1

~ykfM (~xk); by (25),

6

~KX
k=1

~ykf~tk(~xk); by definition of fM ,

� F
~K
~t
( ~Y ) � F ( ~K; ~t; ~Y ):

Thus, (K+; t+; Y +) is a global minimum for P . Whence, from Lemma 3.3, �+ =

�+
M . E

4. Algorithm

A construction based on the following theorem will be used to eliminate unneces-
sary phases in the GILO algorithm which is introduced below. This will allow the
number of phases at any one step to be limited to no more than m+ 1.

THEOREM 4.1. Let Y � 2 R
K� (n+1) be a KT point for PK�

t� for some fixed positive
integer K� and some t� 2 �K

�

, and define J� � fk : 1 6 k 6 K�; and yk > 0g.
Let M be the dimension of the convex hull of the finite set fAx�k : k 2 J�g. Then

there exists ~K 6 M + 1 and a feasible solution ~Y 2 R
~K (n+1) for P ~K

~t
, for some

~t 2 �
~K , such that

(i) F ~K
~t
( ~Y ) = FK�

t� (Y �),

(ii) ~yk > 0, for all 1 6 k 6 ~K ,
(iii) for all 1 6 k 6 ~K, there is a j 2 J� such that ~xk = x�j and ~tk = t�j .

Proof. By (15), (16) and (17), b is in the convex hull of the vectors fAx�k : k 2 J�g.
By Caratheodory’s theorem (see Lay, 1982), the vector b can be written as a convex
combination of ~K 6 M + 1 of the vectors fAx�k : k 2 J�g. Let the scalars ~yk
for k = 1; :::; ~K be the coefficients in this convex combination, and let ~xk and ~tk
be the corresponding compositions and phase classes. Without loss of generality
assume ~yk > 0 for all 1 6 k 6 ~K.
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Then ( ~K; ~t; ~Y ) is feasible for P , since by construction

~KX
k=1

~yk = 1;
~KX

k=1

~ykA~xk = b and ~tk 2 �; ~yk > 0; ~xk 2 X; 1 6 k 6 ~K:

Let �� be the affine function corresponding to the KT point Y � for PK�

t� , as
described by Lemma 3.1.

Since by construction the new feasible solution ( ~K; ~t; ~Y ) consists of phases
with the same composition and phase class as some phase in (K�; t�; Y �), for all
k, 1 6 k 6 ~K , there is a j 2 J� such that ~xk = xj and ~tk = tj . From this and
Lemma 3.1, using the fact that Y � is a KT point, it follows that

��(~xk) = ��(x�j) = ft�
j
(x�j ) = f~tk(~xk): (26)

From Lemma 3.2, using the fact that ( ~K; ~t; ~Y ) is feasible, and from (26) it follows
that

FK�

t� (Y �) =

~KX
k=1

~yk�
�(~xk) =

~KX
k=1

~ykf~tk(~xk) � F
~K
~t
( ~Y ):

This proves part (i). Parts (ii) and (iii) follow from the construction. E

Note that the composition of each phase in the ~Y is the same as the composition
of some non-zero phase in Y �, and the standard proof of Caratheodory’s theorem
provides a simple constructive method for eliminating unnecessary phases and
calculating the values of ~yk. We shall use the notation ( ~K; ~t; ~Y ) := EL(K�; t�; Y �)
to refer to this procedure for eliminating phases from the KT point Y � of PK�

t� to
give the feasible solution ( ~K; ~t; ~Y ) of P with the same objective value.

COROLLARY 4.1. There is a globally optimal solution to P which has no more
than m+ 1 (i.e. mb) phases.

Proof. Since the matrix A is of rank m, the convex hull of the set fAx�k : k 2 J�g

is of dimension at most m. Hence M 6 m, and the the result then follows from
Theorem 4.1. E

(Note in passing that it is clear that a feasible solution for P with K phases
can be extended to a solution with the same objective value and ~K > K phases
by introducing phases k, K < k 6 ~K , with yk = 0 and arbitrary xk 2 X and
tk 2 � . This and Corollary 4.1 show that P could be solved by fixing the number
of phases to m+ 1. Solving this problem directly as a global optimization problem
is however extremely difficult and the following approach is superior.)

For the generic algorithm we are presenting to solve problem P , we assume we
have available the elimination procedure EL described above, a Local Optimization

jogo312.tex; 30/06/1998; 13:20; v.7; p.15



340 KEN McKINNON AND MARCEL MONGEAU

procedure, called LO, and a global optimization procedure (for a lower-dimensional
search space) called GI (Global Improvement). Given a feasible solution, (K; t; Y ),
for P , the local optimization procedure must be such that when started from Y it
returns a KT point, Y � := LO(K; t; Y ) 2 R

K(n+1) , for PK
t , with a function value

no higher than at (K; t; Y ), i.e. FK
t (Y �) 6 FK

t (Y ). Given an affine function,
�� : Rn ! R, the global optimization procedure returns a couple, (t0; x0) :=
GI(��), where x0 2 X and t0 2 � are any feasible point and phase class at which
ft0(x0) � ��(x0) < 0, if such exists, and otherwise x0 is a global minimum for
the subproblem

min
x2X

fM(x)���(x); (27)

and t0 2 � is such that ft0(x0) = fM(x0).

GILO algorithm

Step 0: [Initialization]
Find a feasible solution (K; t; Y ) for P withK 6 m+1. (For example solveP feas.
If infeasible stop – problem is infeasible. If objective is 0, remove substances and
repeat. Let Y be feasible solution found, set K := 1 and choose any t 2 �1.)
Step 1: [Local optimization]
Y � := LO(K; t; Y ), K� := K , t� := t, J� := fk : 1 6 k 6 K�; y�k > 0g.
Select any j 2 J� and define
�� : Rn ! R by ��(x) := ft�

j
(x�j) +rft�j (x

�

j)
T (x� x�j ).

( ~K; ~t; ~Y ) := EL(K�; t�; Y �).
Step 2: [Global improvement subproblem]
(t0; x0) := GI(��).
Step 3: [Global optimality condition]
If fM (x0)���(x0) > 0, stop: [( ~K; ~t; ~Y ) is a global minimum for P ].
Step 4: [Force improvement]
Solve

~KX
k=1

�k = 1;
~KX

k=1

�kA~xk = Ax0 (28)

for f�kg
~K
k=1.

If (28) has a solution, f�kg
~K
k=1 then

Step 4(i): [Phase interchange]
[A new improved feasible solution (K̂; t̂; Ŷ ) to P is given by]

K̂ := ~K + 1;

ŷ
K̂

:= min
�
~yk

�k
: �k > 0; 1 6 k 6 ~K

�
; x̂

K̂
:= x0; t̂

K̂
:= t0;

ŷk := ~yk � ŷ0�k; x̂k := ~xk; t̂k := ~tk; 1 6 k 6 ~K:
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[At least one ŷk is zero.] Eliminate from (K̂; t̂; Ŷ ) all phases k such that ŷk =
0 and renumber phases to give solution (K; t; Y ). [This will have the same
objective function value.]

else [the system (28) has no solution]:
Step 4(ii): [Phase split]
Select any j such that 1 6 j 6 ~K . Choose � > 0 to be small enough so that
the new solution (K; t; Y ) given below is feasible for P and achieves a strict
decrease in F . (Such a � can be found for example by successive halving.)

K := ~K + 1 ; tK := t0;

yK :=
�

� + 1
~yj ; xK := x0;

yj :=
1

� + 1
~yj ; xj := �(~xj � x0) + ~xj ;

tk := ~tk ; 1 6 k 6 ~K;

yk := ~yk ; xk := ~xk; 1 6 k 6 ~K; k 6= j:

Go to Step 1.

Note that in the PEP,A = I and so there is a unique single-phase solution given
by y1 = 1 and x1 = b. In this case the LO step (Step 1) need not be performed in
the first iteration and we can set (K�; t�; Y �) := (K; t; Y ). The initial value of the
phase class can be chosen arbitrarily or chosen to be the one with the lowest GFE
at the initial solution.

Step 4(ii) of the algorithm corresponds physically to splitting a phase (phase j)
into two phases (the modified phase j and phase ~K+1). Hence, after performing this
step, the number of phases is always increased by one. Step 4(i) simply interchanges
one phase for another, keeping the number of phases constant or reducing it.

The GILO algorithm is illustrated in Figures 1 and 2 for the case where m =

n = 1, A = I , and � = fV;Lg (‘V ’ for ‘vapour’, ‘L’ for ‘liquid’). The dotted line
represents the nonsmooth function fM . Values of x�1, x�2, ��, and x0 obtained at
Steps 1 and 2 are shown. Let superscripts l and l+ 1 refer respectively to iteration
number l and iteration number l + 1. Here K�

l
= K�

l+1
= 2. At iteration l

(Figure 1), we have two liquid phases (t�
l

1 = t�
l

2 = L). The elimination step cannot
remove any phases so ( ~K; ~t; ~Y ) = (K�; t�; Y �). The global step (Step 2) found a
vapour phase xl0 (tl0 = V ). Since xl0 can be written as an affine combination of ~xl1
and ~xl2 (i.e. (28) has a solution), we do not add xl0 as a third phase but rather simply
exchange phase ~xl2 for phase xl0, as described in Step 4(i). The local optimization
step (Step 1) will then yield the global solution corresponding to x�

l+1

1 , x�
l+1

2 ,
t�

l+1

1 = L, and t�
l+1

2 = V shown on Figure 2. Note that at each iteration we have
F (K�; t�; Y �) = ��(b), since F (K�; t�; Y �) �

P
y�kft�k(x

�

k), ft�k(x
�

k) = ��(x�k),

�� is affine, and b =
P

y�kx
�

k (or simply by Lemma 3.2 with ~K = 1, ~y1 = 1, and
~x1 = b).
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Figure 1. Local optimum and completed GI step at iteration l.

Figure 2. Global optimum at iteration l+ 1.
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THEOREM 4.2 (Convergence). The GILO algorithm converges to a global min-
imum of P in a finite number of steps, provided that PK

t has a finite number of
distinct objective function values at KT points, for any 1 6 K 6 m + 1 and any
t 2 �K .

Proof. We first show that every step of the algorithm is well defined. As noted
earlier P 0 and hence P attain their infimum as a minimum. In Step 0, P feas can
be used to yield a single-phase feasible solution if one exists, and otherwise prove
that the problem is infeasible.

Now consider Step 4. When (28) has a solution f�kg
~K
k=1, Step 4(i) will be taken.

Since there must exists �k > 0 with 1 6 k 6 ~K, and since ~yk > 0, 1 6 k 6 ~K

(EL in Step 1 removed redundant phases), ŷ
K̂

is well defined and strictly positive.
Next we show that the new solution given by Step 4(i) is feasible for P .
Firstly, by (28) and by (16) using the fact that ( ~K; ~t; ~Y ) is feasible,

K̂X
k=1

ŷk =

~KX
k=1

(~yk � ŷ
K̂
�k) + ŷ

K̂
=

~KX
k=1

~yk � ŷ
K̂

~KX
k=1

�k + ŷ
K̂
= 1:

Secondly, by (28) and by (15) using the fact that ( ~K; ~t; ~Y ) is feasible,

K̂X
k=1

ŷkAx̂k =

~KX
k=1

(~yk � ŷ
K̂
�k)A~xk + ŷ

K̂
Ax̂

K̂

=

~KX
k=1

~ykA~xk � ŷ
K̂

~KX
k=1

�kA~xk + ŷ
K̂
Ax̂

K̂

= b� ŷ
K̂
Ax0 + ŷ

K̂
Ax0 = b:

Thirdly, ŷk > 0, 1 6 k 6 K̂ , by construction, so the solution constructed in Step
4(i) is feasible for P , and so (K; t; Y ), which is obtained from it by dropping
phases with ŷk = 0, is also feasible for P .

Now we show that the new solution, (K; t; Y ), given in Step 4(ii) is feasible for
P . Firstly, it is straightforward to verify that

KX
k=1

yk =

~KX
k=1

~yk; and
KX
k=1

ykAxk =

~KX
k=1

~ykA~xk:

We then use the feasibility of ( ~K; ~t; ~Y ). Secondly, xk 2 X , for � sufficiently small,
since X is open. Finally, yk > 0 for 1 6 k 6 K .

We now show that if the algorithm terminates in Step 3, then (K�; t�; Y �) and
( ~K; ~t; ~Y ) are global minima for P . Note that Y � is a KT point for PK�

t� and that the
�� defined in Step 3 is the same as that defined in Lemma 3.1. Since termination
occurred, fM(x) � ��(x) > 0 for all x 2 X , so by Theorem 2 (K�; t�; Y �)
is a global minimum for P . Since, by the EL construction, ( ~K; ~t; ~T ) is feasible,
Theorem 3 shows that it is also optimal.
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Next we show that Step 4(i) yields a strict decrease in F . Since termination did
not occur in Step 3, ft0(x0) < ��(x0), so by definition of phase K̂ , ft̂

K̂
(x̂

K̂
) <

��(x̂
K̂
). Also by Lemma 3.1, ft�

j
(x�j ) = ��(x�j ) for all j 2 J�. By construction

in EL, for all k such that 1 6 k 6 ~K , there is a j 2 J� such that ~xk = xj , and by
definition x̂k = ~xk and t̂k = ~tk. Hence ft̂k(x̂k) = ��(x̂k) for 1 6 k 6 ~K . Hence
the new value for F at the end of Step 4(i) is

F (K; t; Y ) = F (K̂; t̂; Ŷ ); empty phases eliminated,

=
K̂X
k=1

ŷkft̂k(x̂k)

<

K̂X
k=1

ŷk�
�(x̂k); paragraph above,

= F (K�; t�; Y �); Lemma 3.2.

For Step 4(ii), the proof of the strict decrease in F can be found in the modification
of the proof of Theorem 3 of Jiang et al. (1995) that we described above for our
Theorem 3.1.

Since A has rank m the maximum value of M in Theorem 4.1 is m. Hence
Theorem 4.1 shows that the maximum number of phases which can be present
after the EL step is m + 1, and that this only occurs when the the convex hull
of fAxk : k 2 J�g has dimension m. It follows that in this case the vectors
fAxk : k 2 J�g span R

m so there must be a solution to (28). Hence Step 4(i) is
taken, which either keeps the same number of phases or decreases it. In the other
case, Step 4(ii) increases the number of phases only by one, so the resulting number
of phases in either case is no more than m+ 1. The initial feasible solution has no
more than m+ 1 phases so every LO is a problem with at most m+ 1 phases, and
therefore the KT points found have no more that m + 1 phases. Step 4 forces a
strict reduction in the objective function and the next LO terminates at a KT point
with an objective no higher than at the start of the LO search. Hence the sequence
of KT points has strictly decreasing objective values. Since we are assuming that
there are a finite number of distinct function values at KT points for problems with
m+ 1 or fewer phases, it follows that the algorithm converges in a finite number
of steps.

Finally we note that since A is of full rank a constraint qualification holds (see
Jing et al., 1995), so all local minima occur at KT points. Hence the algorithm
converges to a global minimum. E

5. Implementation and computational results

In this section we make some observations related to the practical implementation
of the GILO algorithm, and we cite encouraging computational experiments.
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In the case where one phase class is known to be modelled by a convex function,
one can show that no more than one phase of this class needs to occur at a global
minimum of P . Moreover the GILO algorithm will not introduce more than one
phase of such a class. This is because at the end of the LO step the tangent plane
fx : ��(x) = 0g is a tangent to all phase functions corresponding to phases which
are present (Lemma 3.1), so the tangent lies below any such function which is
convex. The GI step can therefore never find a point below the tangent for such a
phase class, so the GI step can be simplified by ignoring any convex phase class
where a phase of that class already exists. Where a convex phase class could be
present because there is currently no phase of that class present, the phase class can
be dealt with separately within the GI step by a fast local minimization technique.

If the GI procedure provides a lower bound on its optimal objective value when
it terminates, then the following theorem can be used to obtain a lower bound on
the GFE.

THEOREM 5.1 (Lower Bound). Let � : Rn ! R be an affine function and let �
be the optimal objective value of the LP problem
P lb(�):

� = min
Z2Rn

�(Z);

subject to AZ = b;

Z > 0:

Assume that when the GI(�) procedure terminates, it provides a lower bound D

on its optimal objective value.
Then for all (K; t; Y ) that are feasible for P

F (K; t; Y ) > �+D:

In the PEP, � = �(b).

Proof. By the definition of D

f�(x)��(x) > D for all x 2 X and � 2 �: (29)

Let (K; t; Y ) be any feasible solution to P . Then

F (K; t; Y ) �
KX
k=1

ykftk(xk);

>

KX
k=1

yk(�(xk) +D); by (29);

= �(
KX
k=1

ykxk) +D; since
KX
k=1

yk = 1 and � is affine;

> �+D; since Z �
KX
k=1

ykxk is feasible for P lb(�):
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For the PEP there is a unique feasible point for P lb(�) given by Z = b, so
� = �(b). E

Note that the validity of the bounds provided by Theorem 5.1 does not rely on
any special properties of �. In particular it does not rely on the �� provided by
LO being exact or indeed being of the form given in Lemma 3.1 for any � and
�. (However the bound is better if the LO step is exact.) The �-global optimality
results quoted in the next section use this bound.

Let�+ be the affine function defined in Lemma 3.1 corresponding to the global
optimum (K+; t+; Y +). Assume Z is optimal for P lb(�+) and let K = 1; y1 =

1; x1 = Z and t1 2 � be arbitrary. Then (K; t; Y ) is feasible forP and from Lemma
3.2 it follows that � = �+(Z) = y1�

+(x1) = F (K+; t+; Y +). Also if GI(�+)

is completed and finds its global minimum, it has a zero objective value, so D = 0
in this case. Hence in this case the bound given by Theorem 5.1 is attained.

Figure 3 illustrates the lower bound (LB) implicitly given by the iterate,
(K�; t�; Y �), ��, and x0 of Figure 1. Since LO is exact, � = �D in this case.

Figure 3. Lower bound yielded by the local optimum of Figure 1.

Results from Interval-GILO Implementations

McKinnon et al. (1996) describes an implementation of the GILO algorithm,
Interval-GILO, where the GI global step uses branch and bound and interval
analysis. The GI step is terminated whenever a point is found lying sufficiently
below the tangent plane. Encouraging results from this implementation and later

jogo312.tex; 30/06/1998; 13:20; v.7; p.22



GILO ALGORITHM FOR CHEMICAL AND PHASE EQUILIBRIA 347

improvements on it are summarized below. Full details can be found in Berner
et al. (1998) and McKinnon et al. (1996).

All the results reported for the Interval-GILO implementations give CPU times
in seconds for runs on a Sun Sparc 5 70 MHz workstation. The number of local-
optimization iterations reported refers to the number of iterations needed for LO
step to converge. The number of global-optimization iterations corresponds to the
total number of times an interval has been divided in two in the branch-and-bound
interval-analysis process (see McKinnon et al., 1996).

McKinnon et al. (1996) describes the behaviour of Interval-GILO on three
instances of the PEP which are also studied in McDonald and Floudas (1995a).
The NAG E04UCF subroutine (sequential quadratic programming) was used for
the LO step. A summary of the results is given below. Table I reports numbers of
iterations and CPU times required to obtain convergence.

Table I. Results for problems 1, 2a, and 2b

Problem 1 Problem 2a Problem 2b
Initial phase Liquid Vapour Vapour

iter s iter s iter s

1st global step 8 0.05 2 0.04 269 0.99
1st local step 9 0.07 10 0.08 11 0.10
2nd global step 46 0.16 2 0.04 297 1.42
2nd local step 33 0.22
3rd global step 436 3.11

Entire program 0.38 3.65 2.60

Problem 1 corresponds to the Illustrative Example (n-Butyl-acetate, Water)
of McDonald and Floudas (1995a) (ns = 2 and � = fLg). Started from the
only feasible point, which corresponds to a single liquid phase, Interval-GILO
performed a GI step which yielded a second liquid phases, then a LO step, and then
a second GI which proved that the solution found in the LO step was �-globally
optimal, where � = 10�10 (i.e. by Theorem 5.1, the GFE at the solution is known to
be within � of the global minimum objective value). The global minimum found by
the algorithm therefore corresponds to two liquid phases. McDonald and Floudas
(1995a) reports a CPU time of 1.23 s on a Hewlett Packard 9000/730 to converge
to the same solution, with precision � = 5 � 10�4. (In McDonald and Floudas
(1995a) each problem is solved as a single global optimization problem using the
GOP method with the optimal number of phases assumed to be known.)

Problems 2a and 2b (Benzene, Water, Acetonitrile) (ns = 3 and � = fL; V g)
originate from Castillo and Grossmann (1981) and correspond to Example 6 of
McDonald and Floudas (1995a). These have Liquid–Liquid–Vapour and Liquid–
Vapour Equilibria respectively. Solutions were found to �-global optimality with
� < 1:2� 10�9. These results again compare favourably with those in McDonald
and Floudas (1995a), which reports 766 and 118 s of CPU time respectively for
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Problem 2a and Problem 2b, to converge to the same solution. When McDonald
and Floudas assume that it is known that there is one vapour phase and one liquid
phase at the global optimum of Problem 2b, their algorithm then requires 0.88 s of
CPU time to converge with � = 10�4. Note also that a recent paper McDonald and
Floudas (1996) reports a CPU time of 0.76 s to verify the global optimality of the
global minimum of Problem 2a.

Results from the Interval-GILO method on more difficult problems are described
in Berner et al. (1998) and are summarized in Table II. These problems are modelled
using the UNIFAC equation and involve 4, 5 and 6 of the substances (Ethylene
Glycol, Dodecanol, Nitromethane, Water, Benzene, n-Butanol), and have up to
4 phases at equilibrium. The problems are solved to �-global optimality with
� < 10�10 in all cases. In this implementation the LO step operates in a reduced
space and uses an unconstrained modified Newton algorithm. Problem 3 is the most
difficult problem described in McDonald and Floudas (1996), where it took 1960 s
to obtain and verify the global optimum, compared with 71 s by the Interval-GILO
method.

Table II. Results for problems 3, 4, and 5

Problem 3 Problem 4 Problem 5
Initial phase Liquid Liquid Liquid

iter s iter s iter s

1st global step� 6 0.03 8 0.06 8 0.08
1st local step 8 0.04 6 0.05 5 0.05
2nd global step 15 0.08 856 7.18 5888 87.20
2nd local step 129 0.82 159 1.78 17 0.32
3rd global step 3016 15.65 57450 667.36 1069179 19983.08
3rd local step 5 0.07
4th global step 7975 54.22

Entire program 71.05 677.37 20071.41

�Vapour phase introduced by a local search.

Using the current version of the Interval-GILO method the times for Problems
1, 2a, 2b, 3, 4 and 5 are reduced to 0.26, 1.39, 1.16, 53.97, 509.54, 14227.49 s
respectively.

The interval GI step of the GILO algorithm is suitable for parallel processing,
and in Berner et al. (1998) a parallel implementation is described which achieves
speedups of 10 on a network of workstations for Problems 3, 4 and 5.

6. Conclusions

In this paper, we have extended the necessary and sufficient condition for global
optimality based on the tangent-plane criterion to the case involving multiple-
phase-class models. Moreover we have presented an algorithmic approach that
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reduces the global optimization problem of minimizing the Gibbs free energy in
the multi-phase chemical and phase equilibrium problem into a finite sequence of
local optimization (LO) steps involving no more that mb phases, where mb is the
number of independent balance constraints, and global optimization (GI) steps in
the smaller space of (ns � 1) dimensions, where n is the number of substances
present. The GI step uses the tangent-plane criterion to determine whether the
current solution is optimal, and, if it is not, it finds an improved feasible solution
either with the same number or fewer phases, or with one added phase. It also
determines what class of phase is to be added.

The major advantages of the method are that the global optimization steps are
in a much lower dimensional space than the whole problem, and that the numerical
difficulties occur in the local optimization step, for which well developed methods
are available.

The generic GILO algorithm can be used with different global optimization
methods. A summary has been given in this paper of good numerical results
reported in Berner et al. (1998) and McKinnon et al. (1996) on several instances
of the GFE minimization problem with an interval-analysis implementation for the
global step of the GILO algorithm. Such computational experiments support the
theory.

There is still some scope for improving the current interval-analysis-based GI
step, and it would also be of interest to test other global optimization methods
for the GI step, such as that described in McDonald and Floudas (1994a, 1995b)
and used for the stability test of the GLOPEQ package in McDonald and Floudas
(1996).

Future work should attempt to solve the numerically difficult local optimization
subproblems more efficiently, for example along the lines proposed by Trangenstein
(1987) for phase equilibrium problems involving two phases. A more accurate
solution to the LO problem would produce even more accurate �-global optimal
error bounds.

Sometimes a phase-class model may only be valid over part of the composition
space. For example, when it is known that a substance can only occur in a phase with
very low concentration, it is often a good approximation and is easier numerically to
introduce a phase-class model which does not contain that substance. This situation
is described by a multiple-phase-class model with special properties Smith et al.
(1993) and requires further study.
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