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Abstract. Thispaper addressesthe problem of finding the number, K, of phases present at equilibrium
and their composition, in a chemical mixture of n, substances. This corresponds to the global
minimum of the Gibbs free energy of the system, subject to constraints representing m;, independent
conserved quantities, where m;, = ns when no reaction is possible and m; < n. + 1 when reaction
ispossible and n. isthe number of elements present. After surveying previous work in the field and
pointing out the main issues, we extend the necessary and sufficient condition for global optimality
based on the “reaction tangent-plane criterion”, to the case involving different thermodynamical
models (multiple phase classes). We then present an agorithmic approach that reduces this global
optimization problem (involving a search space of m; (ns — 1) dimensions) to a finite sequence of
local optimization stepsin K (ns — 1)-space, K < my, and global optimization stepsin (ns — 1)-
space. The global step uses the tangent-plane criterion to determine whether the current solution
is optimal, and, if it is not, it finds an improved feasible solution either with the same number of
phases or with one added phase. The global step aso determines what class of phase (e.g. liquid or
vapour) isto be added, if any phase is to be added. Given alocal minimization procedure returning
a Kuhn-Tucker point and a globa optimization procedure (for a lower-dimensional search space)
returning a global minimum, the agorithm is proved to converge to a global minimum in a finite
number of the above local and globa steps. The theory is supported by encouraging computational
results.

Key words. Chemical and phase equilibrium, convexity, Gibbs free energy, Global optimization,
Non-convex optimization, Tangent-plane criterion.

1. Introduction

A mixture of substances may separate into different phases. The composition, i.e.
the proportions of the different substances present, is the same throughout a phase.
If no reactions are possible between the different substances the problem is called
the phase equilibrium problem (PEP), and if reactions are possible the problem is
known as the chemical equilibrium problem (CEP).

The existing techniquesfor the PEP and CEP divide into two classes (see Smith
and Missen, 1982). The first concentrates on solving a set of nonlinear equations
arising from the stationarity conditions for a thermodynamic function and the
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326 KEN McKINNON AND MARCEL MONGEAU

material and charge balance equations. I n the second approach the thermodynamic
function is minimized. When the system temperature and pressure are constant,
this function is the Gibbs free energy (GFE) and the problem is referred to as
the isothermal chemical and phase equilibrium problem. Furthermore, once an
algorithm for this GFE minimization problem is developed, it can be modified
to handle other types of equilibrium problems: the isenthalpic, isentropic and
isochoric phase equilibrium problems (see, e.g., Brantferger, 1991).

In this paper we shall use the minimization approach: we consider a mathemat-
ical formulation involving the minimization of a non-convex objective function
(the GFE), subject to material and charge balance equality constraints and non-
negativity constraints. We assume the pressure and temperature of the systemto be
fixed. We consider PEPs and CEPs which involve different thermodynamic func-
tionsto model the different classes of phase that may be present at equilibrium. A
phase class, as introduced by Smith et al. (1993), is characterized by the chemical
potential function used to model it. For example, vapour phase and liquid phase
may be modeled as different phase classes. We will extend the proof of the “reac-
tion tangent-plane criterion” of Jiang et al. (1995) to the case involving different
phase classes. Note however that we shall restrict this paper to class models where
each substance can be present.

The tangent-plane criterion (for the PEP and with a single phase class) was
introduced by Gibbs (18733, b) and proved by Baker et a. (1982). Peng (1989)
illustrates the applicability of a tangent-plane criterion for binary systems (i.e.
involving two substances and two phases) in the PEP involving multiple-phase-
class models. Smith et al. (1993) extends the criterion to the case of the CEP with
multiple-phase-class models. Jiang et a. (1995) provide a proof of this result in
the case of a single-phase-class model. The formulation used for the CEP in the
current paper is different from that used in Jiang et al. (1995): we shall present in
this paper a unified geometric interpretation for the PEP and the CEPR.

The generic agorithm we present extends, for example, the approach in
Michelsen (1982a, b) which also treats the PEP in a stepwise manner. Michelsen
usesalternately alocal methodto obtain astationary point of the GFE corresponding
to a given number of phases, and a stability test, derived from the tangent-plane-
criterion necessary and sufficient global -optimality condition of Baker et al. (1982),
to decide whether an extra phase should be added. He however uses alocal equa-
tion solving method to find a stationary point of the tangent distance function and
makes use of several initial estimatesin an attempt to determine whether aphaseis
stable. Also, Michel sen concentrates on PEPs involving asingle phaseclass. In our
approach different thermodynamic models for the different phase classes which
may be present at equilibrium are considered. Moreover, the way we make use of
the tangent-plane criterion is different. We use the tangent-plane criterion either to
add an extra phase, to improve the Gibbs free energy without changing the number
of phases, or to establish global optimality. Because of itslocal nature, Michelsen's
algorithm may not succeed in locating the global minimum, whereas the generic
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algorithm we present is proved to convergeto aglobal minimum in afinite number
of local and global steps. The local and global optimization algorithms to be used
in the generic algorithm are not specified in this paper: avariety of combinations of
methods could be used. At the end of this paper we cite encouraging results from
an implementation which uses interval-analysis techniques for the global stability
step.

Other work on the minimization of the GFE includes that of Gautam and Sei-
der (1979). They compare the performance of the Newton-like Rand and NASA
methods, which require removal of phases (and variables) to avoid singular matri-
ces when the amount of a substance in a phase tends towards zero, with Wolfe's
guadratic programming algorithm. By making use of the phase stability analysis,
Wolfe's agorithm circumvents a problem of Rand and NASA methods: that of
getting prematurely trapped with too few phases. Wolfe's quadratic programming
algorithm however does not eliminate the possibility of convergenceto alocal min-
imum. The algorithm presented in Nghiem and Li (1984) issimilar to Michelsen’s
except for the fact that a “ quasi-Newton successive-substitution” method is used
for the local-minimization step. Clasen (1984) gives an agorithm that parallels
the generalized Benders decomposition algorithm of Geoffrion (1972). Hisrelaxed
master problem, used to select values for the number of moles in each phase,
isalinear programming problem. The dual of the problem obtained by fixing the
number of molesin each phase, isthen solved asasubproblem to obtain the compo-
sitions. However, Clasen’s algorithm is described for the ideal GFE minimization
problem formulation in which the objective function is convex, and he assumesthe
number of phases present at equilibrium to be known a priori. The second-order
method presented in Trangenstein (1987) handles the poorly-scaled minimization
problems associated with mixtures near bubble points, dew points and critical
points (see Smith and Van Ness, 1987). It also addresses the problem of avoiding
convergenceto trivial solutions (i.e., solutions containing a spurious phase, which
has the same compostion as another phase), and it attempts to maximize the accu-
racy in the solution. More specifically, in order to address the poor scaling of the
minimization problem and the indefiniteness of the Hessian, he adapts a modified
Newton’s method (as in Dennis and Schnabel, 1996) to the particular structure of
the phase equilibrium problem and to the stability-analysis optimization subprob-
lem involved in determining the number of phases at equilibrium. He however
confines his numerical methods to the search for local minima, and he deals with
phase equilibrium problems involving at most two phases. Sun and Seider (1992)
presents a homotopy-continuation algorithm for the phase equilibrium problem.
Floudas and Visweswaran (1990, 1993) presents the GOP (Global OPtimization)
algorithm, which is related to the resource decomposition algorithm of Wolsey
(1981). In McDonald and Floudas (1995a) the GOP algorithm is applied to numer-
ous examplesfor which the liquid phase is model ed by the NRTL equation and the
vapour phase is assumed to be ideal. The GOP algorithm decomposes the original
problem into primal and relaxed dual subproblems that provide upper and lower
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bounds on the global optimum, and makes use of branch and bound. Finally, the
introduction of McDonald and Floudas (1995a) constitutes a good survey of global
optimization for the chemical and phase equilibrium problem.

The current paper dividesinto six parts. Following thisintroduction, we formu-
late the Gibbs free energy minimization problem and point out the main issuesin
this particular global optimization problem. In Section 3, we extend the necessary
and sufficient condition for global optimality based on the “reaction tangent-plane
criterion”, to the case involving multiple-phase-cl ass thermodynamic model s, pay-
ing specia attention to the issue of the number of phasesthat exist at equilibrium
being unknown a priori. In Section 4 we present an algorithmic approach, the
GILO method, that reduces the global optimization problem of minimizing the
GFE to afinite sequence of local optimization steps and global optimization steps
inalow-dimensional space. Theglobal (phasestability) step usesthetangent-plane
criterion to determine whether the current solution is optimal, and, if it is not, it
finds an improved feasible solution with at most one extra phase. When the global
step proves that the solution is not optimal, it also determines what class of phase
(e.g. liquid or vapour) isto be added or exchanged with an existing phase. We show
that the search can be restricted to solutions involving, in the case of the PEPR, no
more phases than the number of substancesin the mixture, and, in the case of the
CEPwithout charge, no more than the number of elements. Thealgorithmisproved
to converge to a globa minimum in a finite number of the above local and global
steps. In Section 5, we discuss implementation issues and we cite encouraging
computational experiments. We draw conclusionsin Section 6.

Note that throughout the paper the superscript “+” will denote globally optimal
solutions and the superscript “*” will denote local optima or Kuhn—Tucker points.

2. The Gibbsfreeenergy minimization problem

Assume we have a mixture of n, substances and that there are a finite number
of phase classes with corresponding thermodynamic models for their GFE. The
number of phases, denoted by K, required to reach equilibrium is not known a
priori, but it will be shown later not to exceed my,, where my is the number of
independent balance constraints modeling conserved quantities.

Let {2y}, bethe amount of each substancei in each phase k, 1 < k < K.
L et us denote the proportion of phase k& which is substancei by ;. Thisis given
by

T = =t =12, ng k=12 K. (1)
Ej:]_zjk;
The GFE is given by
K ng

g(K,t,Z) = Zzzikﬂitk(wlka--wxnsk)a (2)

k=1:=1
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wheret;, € 7,1 < k < K,and i, : R* — Risthechemical potential of substance
7 in a phase of class 7, a nonlinear function of composition whose form depends
on the thermodynamic mode! chosen to describe aphase of classy. Infact 1., also
depends on the system temperature and pressure but thisis not considered here as
in this paper we shall be concerned with computing the equilibrium compositions
at specified pressure and temperature.

The simplest model for the PEP, which is referred to as the ideal case, yields a
GFEfunction, g( K, t, -), whichisconvex (seeLemma8.7D of Shapiro and Shapley,
1965). Other modelsinclude the Redlich/Kister expansion, the Margules equations
and the van Laar equations, which are all special cases of a general treatment
based on rational functions (ratios of polynomials), and the Wilson model, the
NRTL (Non-Random-Two-Liquid) equation, the UNIQUAC (UNIlversal QUASI-
Chemical) equation, and the UNIFA C method (see McDonald and Floudas, 1995z,
Smith and Van Ness, 1987). In petroleum reservoir simulation, the Peng—Raobinson
equation of state, Peng and Robinson (1976), is commonly used to describe the
behaviour of hydrocarbon phases.

In the PEP there are no reactions so the amount of each substanceis conserved.
There are therefore ¢ = n,; conserved quantities and the following linear balance
constraints hold.

K
Zzzk:b;7 7':17277Q7 (3)
k=1

where b, denotesthe total amount of substances present. In the CEP, the individual
substances are not conserved but may react together to form other substances.
However the total amount of each element present is conserved. Also if ionic
substances are possible then the constraint that the total chargeis conserved isalso
required. These constraints give rise to linear balance equations of the following
form:

K ng
k=1i=1
Here ¢ = n. if there is no charge congtraint, and ¢ = n, + 1if thereis a charge
constraint. If constraint j is an element-balance constraint, then the coefficient o’
denotes the amount of element ; per unit amount of substance 7, and ¥': is the
total amount of element j in the system. If constraint 5 correspondsto the charge
constraint, then a’;; denotesthe amount of chargein unit amount of substance and
coefficient b’; isO.
Let Z bethevector whoseith component, Z;, givesthetotal amount of substance
i,i.e Z; = S5 | 2k Then (4) can be rewritten equivalently as

Ns
S Zi =V, j=12....4q.
=1
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330 KEN McKINNON AND MARCEL MONGEAU

For the CEP, let A’ denote the ¢ x n, matrix with (5i)"* entry a’;, and for
the PEP, let A’ be the ng x n, unit matrix. The (global) optimization problem
corresponding to either the PEP or CEP can now be written as:

P

Jin 9(K,t,2)

subjectto A'Z =¥, (5
K
Zz’ik:Zia i:]-aza"'ansa (6)
k=1
z >0, (7)
tver, k=12,... K, (8)
K e N".

The non-negativity constraint (7) is a consequence of the definition of z;.

Throughout the paper we assumethat the only substancesincluded in the model
are those which could occur at a positive level in some feasible solution. By taking
a convex combination of such solutions for each substance, it follows that there
exists afeasible solution in which all substances are present, i.e.,

thereexists Z > Osuchthat A'Z = V'.

Thefollowing technique can be used to detect whether amodel contains substances
which cannot occur in any feasible solution, to eliminate such substances when
they occur, and a'so to find a feasible solution in which all substances are present
at a positive level. Solve the following LP problem, P whose objective is to

maximize the minimum amount of any substance.
pfess .

subjectto ¢ < 7Z;, i=1...,n,, 9

If PfeSjsinfeasible, then thereis no combination of substancesin the model which
can satisfy the balance constraints, so the problem definition is inconsistent. If a
positive objective valueisfound, then all substances can occur at the positive level
given in that solution. Otherwise the optimal objective must be zero. At least one
substance will have a non-zero shadow price in (9). All such substances can be
eliminated and the LP repeated for the reduced problem until a positive objective
isfound.

A globally optimal solution of P’ corresponds to the true equilibrium solution
(i.e. theonefound in nature). Later we shall see that limiting the number of phases
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K to m;, where my, isthe rank of A’, does not exclude the optimal solution. For
P’ with K and ¢ fixed, g isa continuous function of z, so theinfimum is achieved.
Because only a finite number of K and ¢ need be considered, the infimum is
achieved for problem P’, so the minimum is well defined. For the PEP my, = n,
for the CEP without charge constraint m; < n., and for the CEP with charge
constraint my, < ne + 1.

There are several difficultiesin computing aglobal minimum of the GFE. First,
the number of phases K+, and the class ¢} of each of these K phases, at which g
achievesaglobal minimum are usually not known a priori. Moreover, for fixed K
andfixedt € 7%, sincethe GFE function may be non-convex in the non-ideal case,
adescent algorithm may convergeto alocal minimum which isnot global. Another
difficulty isthat even with K = K, adescent algorithm may converge to a point
at which the total amount in a phase is zero, or at which there is a spurious phase
(i.e. the proportions of the substancesin two phasesk and /, k # [ areidentical, so
i, = xy for L < 4 < nyg). There are numerical difficulties in the neighbourhood
of such a point (see Trangenstein, 1987). The chemical potentials are generaly
assumed to satisfy the Gibbs-Duhem equation (see Smith and Van Ness, 1987) and
to have a logarithmic singularity when a substance is removed from an existing
phase. Also, even the case in which both K is known and the GFE function is
convex, numerical difficulties can arise due to the unboundedness of the gradient
at points where the amount of some substancein a phaseis null. Further numerical
difficulties arise for some values of pressure and temperature. For mixtures near
bubbl e pointsand dew pointsone of the phasesbecomessmall and the Hessian of the
objective function becomes nearly singular. A similar difficulty occurs near critical
points, because at these points two phases have nearly identical compositions.
Trangenstein (1987) discusses in detail the poor scaling of the Hessian matrix in
the GFE minimization problem and presents a (local) optimization method based
on the modified Newton method, with adaptations to suit the particular structure
of the phase equilibrium problem. A major attraction of the approach taken in
this paper is that most of these numerical difficulties do not occur in the global
optimization part of the algorithm but are dealt with in the local optimization part,
for which well-devel oped techniques are available.

The chemical and phase equilibrium problem has two features that make it
atypical of many global optimization problems. Firstly, the number of variables z;;.
present isnot known apriori. Secondly, the aimis not so much obtaining asolution
with an objective value which is close enough to the optimal objective value (asis
usually the case when the objective function has an economic interpretation), but
rather to find asolution which itself is close enough to the optimal solution (so that
the number of phases, their classand their composition at equilibrium are correctly
determined and thus correspond to the equilibrium found in nature).

Note finally that problems in chemical and phase equilibria often involve
instances for which n, < 10 and K™ < 3. In many of the problems reported
in the literature (see Ammar and Renon, 1987; Dluzniewski and Adler, 1972;
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Floudas and Pardalos, 1987; Gautam and Seider, 1979; McDonald and Floudas,
1994b, 1995a; Mehraet al., 1983; Peng, 1989; Sun and Seider, 1992; Trangenstein,
1987; Xiao et a., 1989) n, is as small as 2 or 3. Sometimes however these small
problems must be solved very rapidly. For instance, an important application of
phase equilibriaisin the modeling of petroleum reservoir fluid flow (see Trangen-
stein, 1987). Within a numerical reservoir simulator, phase equilibrium is to be
determined at each time step and for each cell in agrid partitioning the reservoir.

3. Thereaction tangent-plane criterion for multiple-phase-class models

The problem P’ will now be transformed to the form P below by changing the
variables to the total amounts in each phase and the composition of each phase,
and by eliminating redundant constraints. Let 1, denote the total amount in phase
k, so

Yk =D Zik. (10)
i=1

From (10) and (1) it follows that
Zik = YkTik- (11)
Assume now that there exists a vector w such that

wlA' = e,, =(1,1,...,1) € R,

8

wl'y = 1.

Note that for fixed K and fixed compositions z;;, the objective function (2) and
the left-hand side of conservation constraints (3) and (4) are linear functions of the
z;k, and that the other constraints are all non-negativity restrictions. It follows that
if 2, and %, give an optimal solution for right-hand side ¢', then, for any p > 0,
pzh, and z%, give an optimal solution for right-hand side pb'. Hence, provided
w’b > Othereisnolossin generality in assuming that the total amount present is
normalized so that w’ o' = 1.

For the PEP, A’ is the identity matrix so the vector w consisting entirely of
ones has the required property. For the CEP, we choose to measure the amounts of
substances and of elementsin units of mass. It then follows that the coefficient a;,
corresponding to element balance constraint 5, isthe mass of the element associated
with row j in unit mass of substance i. The sum over a column of al elements
corresponding to the element-balance rows is then unity. Hence, a w consisting of
onesin al element-balance rows and a zero in the charge balance row, if it exists,
has the desired property.
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By performing row operations on Equations (5) we can therefore obtain the
equivalent equations

A

A
1,1,..,1| Z =
0

O o

where A iscomposed of mn;, — 1 linearly independent rows of A’ and b is composed
of the corresponding rows of .

Now using the equation with unit coefficients to eliminate Z,,, from the first
my — 1 rows gives the equivalent equations

A o b
1,1,..,1]1]|z= |1/, (12)
0o |0 0

where A is the m x n matrix whose i columnis A; — A,,., b = b/ — A,_,
m = my, — 1,andn = ny — 1 (when C isamatrix, C; denotesits jth column).
The row operations done to transform Equations (5) to Equations (12) are rank
preserving, so it follows that A isof rank my — 1 = m, i.e. full rank.
For the development of the theory it is convenient to work in the reduced space
obtained by eliminating the variables for one of the substances, say substancen.
Equations (12) are equivalent to the equations

n s
SN AiZi=b, > Zi=1
1=1 =1

Substituting for Z; using (6) and (11) gives the equivalent equations

n K ns K
STAD gz =0, S yemin =1,
k=1

i=1 k= i=1k=1
which, because by Definition (1) -7, z;, = 1, are equivalent to

K K
k=1 k=1

where z;, € X, and (recall n = n, — 1)

n
X’E{xGIR{":ingl, x; > 0}.
i=1
Now for v; > 0, i = 1,...n, where )", v; = 1 define

)

Ns
(v, .on,) = Zvium(vl,...,vns), and
1=1

fo@) = fo(vi, o, vp_1,1 - zn:vi) for v € X. (14)
=1
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Function f,, defined over thefull n,-space, and f,, defined over the reduced n-space
give the GFE of unit amount of a single phase of phase class .. For the true GFE
and the common functions used to model it, f,, istwice continuously differentiable
and
lim % = —oo, foral 1<i<n,.
v; =0+ Ov;

This implies (see Jiang et a., 1995) that provided all substances can be present
(we are assuming we have eliminated any which cannot by, for example, using
problem Pe3) any phase that is present at equilibrium (i.e. has y;, > 0) has a
non-zero amount of every substancein the phase. We can therefore replace X with
its interior, X, without eliminating the optimal solution. From this observation
and (2), (11), (13) and (14), it follows that problem P’ is equivaent to the problem
P:

IF(T}’QFKtY Zykftk (Tk)
K

subject to ZykA:vk—b (15)
e
Z (16)
yk/O, k=12...,.K, an
meX, k=12 K, (18)
trer, k=12,....K
K eN',

whereY = (y1,.. ., Yk, 71, .., T k)
rank m, m = my, — 1, n = ng — 1,
k=12,...,K,t, €T,y €ER.

Note that with this approach problem P represents both the PEP and the CEP.
Thisisin contrast to the work of Jiang et al. (1995) who use adifferent formulation
for the CEP: the form used for both the PEP and the CEP in the current paper is
the same as that used in Jiang et al. (1995) for the the PEP.

Let PX" denote problem P in which K is fixed to a positive integer K* and
t* € 7K isfixed, and let FX™ : RK"(»+1) _ R be the corresponding objective
function, so FX™ = F(K*,t*,Y*). For agiven (K*,t*,Y*) define

J'={k:1<k< K"y, >0}

The Kuhn-Tucker (KT) conditionsfor PX " are stated in the following Lemma.

e RE(+Y)  Aisanm x n rea matrix of
b € R™, 7 is afinite index set, and, for

LEMMA 3.1. Y* isa Kuhn-Tucker point for X" if and only if there exist multi-
pliersa € R™ and # € R such that
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() fi: (z}) > ol Az + B (= ©*(z})) for all 1 < k < K*, with equality if
keJr,

(i) Vfi: (z3)T =aTA (= (V")) foral k € J*,

(iii) Y* isfeasiblefor X,
where by definition ©*(z) = o’ Az + 3.

Given any k € J*, the affine function ©* can be written in the form

0*(z) = fiz (x}) + Vi (a})T (z — 7).

Proof. Parts (i), (ii) and (iii) are the standard KT conditions. The form of ©* is
obtained by substituting for o A and 3 using parts (i) and (ii). O

This lemma has the following geometric interpretation. At a KT point Y* for
problem PX”, there exists an n-dimensional hyperplane {x : ©*(z) = 0} which
isnot above fi- at zy forany k, 1 < k < K*, andistangent to f at the points zy,
wherey; > 0.

LEMMA 3.2. Assume (K,%,Y) and (K*,¢*,Y*) are feasible for P. Let ©* :
R" — R be an affine function of theform ©*(z) = o’ Az + 3, wherea € R™ and
B € R, and assumethat f;: (z}) = ©*(z) for all & € J*. Then

K
FE (V") =Y 5:0% (k) = T+ 6.
k=1

In particular the above relation holds if Y* is a KT point for PX™ with ©* the
corresponding affine function defined in Lemma 3.1.

Proof. If (K,t,Y) isfeasiblefor P then by (15) and (16)

K K
S yk®*(zp) = > yrla Az + B)
p p

K K
= ozTZykA:vk +52yk =alb+ 0.
k=1 k=1

By the definition of ©* and thefact that (K,#,Y) and (K*,t*,Y*) arefeasible

K* K* K
FE (YY) =Y yife(ah) = D_piO(zh) = ab+ 6 =D 50 (Th).
k=1 k=1 k=1

Finally if Y* isaKT point for PX" then, by Lemma 3.1 (i) and (i), ©* and Y'*
have the properties required by thislemma. O

The above two lemmas are adaptations of Corollary 1 of Jiang et al. (1995) and
Lemma 2 of Jiang et al. (1995), modified to allow for the different phases classes
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and paying attention to the fact that we may have K* # K. The proof of the next
theorem can be obtained by adapting that of Theorem 3 of Jiang et al. (1995), where
some care has to be given to the class of each phase involved and where Lemma 2
of Jiang et al. (1995) should be replaced by Lemma 3.2 abovein order not only to
deal with the case involving multiple-phase-class models but also so asto address
explicitly theissueof K being unknownin P (recall that Lemma3.1, whichisalso
needed, isvalid for fixed K). A constraint qualification (see Theorem 1 of Jiang et
al., 1995) is also required to show that all local minima occur at KT points. This
relieson A being of full rank, which it is by the construction leading to (12).

THEOREM 3.1. Let t+ € 75" and Y+ € R¥"(»+1) for some positive integer
K. Then, (K*,tT,Y™) is a global minimum for P if and only if Y+ isa KT
point for PX " and

fo(z) —©%(z) >0, forallz e X andallner, (19)

where{z : ©1(x) = 0} isthetangent hyperplanecorrespondingto (K, ¢+, Y ™),
as described by Lemma 3.1.

Note that to extend the local conditions given in Lemma 3.1 to the global
conditions, we need to specify that ©* must not be above f,, for any n € 7 or any
x € X, rather than just at those phase classes ¢;; and compositions x;, occurring in
the solution (K*, t*,Y™).

We now introduce alemma and theorem which clarify the geometric interpreta-

tion of the problem. They deal with the nonsmooth function f»; : X — R, which
gives the minimum GFE of a single phase of given composition,
LEMMA 3.3. Let (K*,t",Y ™), be a global minimum for P, K™ € N*, t* €
K7 and Yt € RET (4D and {z : ©F(z) = 0} be the corresponding tangent
hyper plane described by Lemma 3.1. Then we have that, at the points {z} : 1 <
k < Kt andy;” > 0}, fu is differentiable and {z : ©F(z) = 0} is tangent to
Ir-

Proof. Letk besuchthat1 < k < K+ andy; > 0. We have
fu(zy) = r;,neipfn(wz) < ft;(wﬁ) = 0% (=), (20)

by Lemma 3.1. We show that the inequality in (20) isin fact an equality. Suppose
otherwise, thenthere existsan € 7 suchthat f, (z;) < ©*(z;). This contradicts
Theorem 3.1. Hence,

fu(z) = 0% (z). (21)
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Furthermore, let e > 0 and d € R". Using (21) we obtain
fM(gv;cr + ed) — fM(x;) = %pfn(x,j + ed) — @+(:L"Z)

> rg%in@Jr(kar +ed) — OT (), (22)

since, by Theorem 3.1, f,,(z) > ©*(z) for al z € X andn € 7. On the other
hand, by (20) and (21) imply fa/(z}) = fir (z;), sowe have

Pl + ed) = far(af) = minfy(of +ed) = fp (@),
< fr (@) +ed) = fr (@), (23)
Using (22), (23), dividing by e and passing to the limit, we obtain

e—0t €

<d"V (o),
since ®* isaffine and ft,j is differentiable. Also, by definition of O,
d'Vv fer (zf)=d"ver.

Thus, the abovelimit existsand isequal to d” VO™ . Thismeansthat the directional
derivative of fys at ;7 in the direction d is given by d” VOT. Whence, fi/ is
differentiable at z;” and V fs(z}) = VOT. O

We thus obtain the following characterization of global minimafor P in terms of
the function f,.

THEOREM 3.2 (Tangent-Plane Criterion). Let K+ € N*, ¢t € 7K and Y+ ¢
]1&](7L (n+l)_

If (K*,¢tT,Y ™) isa global minimum for P, then Y is a KT point for Ptff
and
fu(z) —O5(z) >0, foralze X, (24)

where{z : ©7,(z) = 0} isthetangent hyperplanecorrespondingto (K, ¢+, Y+),
as described by Lemma 3.3.
Conversely, if Y+ isa KT point for PX" for some K+ andt* € 75 and

fu(z) —OT(z) >0, forallze X, (25)
where {z : ©T (z) = 0} isthetangent hyperplanecorrespondingto (K +,¢*,Y ™)

as described by Lemma 3.1, then (K™, +*, Y ") is a global minimum for P and
ot =o7.
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Proof. Let (K™,t",Y ™) be a global minimum for P and let z € X. Then by
Theorem 3.1, Y+ isaKT point for PX " and f,(z) — ©*(z) > 0, foral 7 € 7.
By Lemmas3.1and 3.3, ©, = ©T. Hence, we have f,(z) — ©1,(z) > 0, for all
n € 7.Inparticular, fort = argmin{ f,(z) : n € 7}, wehave fy/(z) —O7,(z) > 0.

Now let Y+ beaKT point for Pff+ for somet™ and K, and assumethat (25)
holds. Let (K,,Y), suchthat K € N*, 7 € 75, and Y € RE("+1) be afeasible
point for P. We have

M=

F(KT,tt, vy =FE (v") = ¥ %0%(3), byLemma3.2,

B
[l

1

M=

< ) Ukfm(Tk), by (25),

B
[l

1
K

< Y kfi, (#), by definition of fy,
k=1

= FN(Y) = F(K,i,Y).

Thus, (K+,t",Y ") isagloba minimum for P. Whence, from Lemma3.3, 0" =
o1 O

4. Algorithm

A construction based on the following theorem will be used to eliminate unneces-
sary phasesin the GILO agorithm which is introduced below. Thiswill allow the
number of phases at any one step to be limited to no more than m + 1.

THEOREM 4.1. LetY* € RF™ (1) bea KT point for PX” for somefixed positive
integer K* and somet* € 777, and define J* = {k : 1 < k < K*, and y, > O}.
Let M be the dimension of the convex hull of the finite set { Az}, : k € J*}. Then
there exists K < M + 1 and a feasible solution Y € RE ("*+1) for PX, for some

t e 7%, such that

(i) FR(V) = FE(ve),

(i) g >0, forall 1 < k < K,

(iii) for all 1 < k < K, thereisaj € J* suchthat 7 = and ¢, = tr.

Proof. By (15), (16) and (17), bisintheconvex hull of thevectors{ Az} : k € J*}.
By Caratheodory’stheorem (see L ay, 1982), the vector b can be written asaconvex
combination of K < M + 1 of the vectors { Az}, : k € J*}. Let the scalars g,
for k = 1, ..., K bethe coefficientsin this convex combination, and let z; and &,
be the corresponding compositions and phase classes. Without loss of generality
assumeg; > Oforall 1< k < K.
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Then (K,,Y) isfeasiblefor P, since by construction

K K
k=1 > Ay =band freT, § >0, FHeX, 1<k<K.

Let ©* be the affine function corresponding to the KT point Y* for PX", as
described by Lemma 3.1. o

Since by construction the new feasible solution (K, #,Y’) consists of phases
with the same composition and phase class as some phase in (K*,t*,Y™), for al
k, 1< k< K, thereisaj € J* such that 7 = z; and f), = t;. From this and
Lemma3.1, using the fact that Y* isa KT point, it follows that

O (#r) = 0%(25) = fu (z}) = fr, (k). (26)

From Lemma3.2, using the fact that (K, 7,Y) isfeasible, and from (26) it follows
that

K K
FE(Y™) =Y k0 (@) = Y dinfs, (#) = Ff(Y).
k=1 k=1
This proves part (i). Parts (ii) and (iii) follow from the construction. O

Note that the composition of each phaseintheY isthe same as the composition
of some non-zero phasein Y*, and the standard proof of Caratheodory’s theorem
provides a smple constructive method for eliminating unnecessary phases and
calculating the values of .. We shall usethe notation (K, #,Y) := EL(K*,t*,Y*)
to refer to this procedure for eliminating phases from the KT point Y* of PX” to
give the feasible solution (K, ,Y") of P with the same objective value.

COROLLARY 4.1. Thereis a globally optimal solution to P which has no more
than m + 1 (i.e. m;) phases.

Proof. Sincethe matrix A is of rank m, the convex hull of theset { Az} : k € J*}
is of dimension at most m. Hence M < m, and the the result then follows from
Theorem 4.1. O

(Note in passing that it is clear that a feasible solution for P with K phases
can be extended to a solution with the same objective value and K > K phases
by introducing phases k&, K < k < K, with y, = 0 and arbitrary z, € X and
tr € 7. Thisand Corollary 4.1 show that P could be solved by fixing the number
of phasesto m + 1. Solving this problem directly asaglobal optimization problem
is however extremely difficult and the following approach is superior.)

For the generic algorithm we are presenting to solve problem P, we assumewe
haveavailablethe elimination procedure EL described above, al ocal Optimization
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procedure, called LO, and aglobal optimization procedure (for alower-dimensional
search space) called Gl (Global Improvement). Givenafeasiblesolution, (K, ¢,Y),
for P, the local optimization procedure must be such that when started from Y it
returnsaKT point, Y* := LO(K,t,Y) € RK(»*D for P/, with afunction value
no higher than at (K,t,Y), i.e. EX(Y*) < FX(Y). Given an affine function,
©* . R" — R, the global optimization procedure returns a couple, (to, zg) =
Gl(©*), where zp € X and tg € T are any feasible point and phase class at which
fio(zo) — ©*(z0) < O, if such exists, and otherwise zg is a global minimum for
the subproblem

ﬂéi)? far(x) — 0% (x), (27)

andtg € T issuchthat f;,(zo) = fam(zo).

GILO algorithm

Step O: [Initialization]

Find afeasiblesolution (K, £, Y) for P with K < m + 1. (For example solve Pes,
If infeasible stop — problem isinfeasible. If objectiveis O, remove substances and
repeat. Let Y be feasible solution found, set K := 1 and chooseany ¢ € 71.)

Step 1: [Local optimization]

Y*:=LO(K,t,Y), K* .= K,t* :=t,J :=={k: 1<k < K* y; >0}

Select any 5 € J* and define

O©* I R" — Rby ©*(z) := f: (z7) + G (x;‘)T(:L" — 7).
(K,1,Y) := EL(K*,t*,Y™*).

Step 2: [Global improvement subproblem]

(o, zo) = GI(©").

Step 3: [Global optimality condition]

If far(wo) — ©*(z0) > 0, stop: [(K,£,Y) isaglobal minimum for P].
Step 4: [Force improvement]

Solve
K K
Z ap =1, Z ap AT, = Axg (28)
k=1 k=1

for {ak},{(zl. )
If (28) hasasolution, {ay } X, then
Step 4(i): [Phaseinterchange] o
[A new improved feasible solution (K, £,Y") to P isgiven by]
K = K+1,
g)f( = min{%:ak>o,1<k<f(}, :ﬁklzwo, tAf(Z:to,
e73
gk = Gk — Jook, Epi=dp, =1, 1<k<K.
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A

[At least one g, is zero.] Eliminate from (K, A,Y’) al phases k such that g, =
0 and renumber phases to give solution (K,¢,Y"). [This will have the same

objective function value.]
€l se [the system (28) has no solution]:

Step 4(ii): [Phase split]

Select any j suchthat 1 < j < K. Choose § > 0 to be small enough so that
the new solution (K, ¢,Y") given below is feasible for P and achieves a strict
decreasein F'. (Such ad can be found for example by successive halving.)

K=K+1, tg:=1,

o :
Yk = myja TK = T0,
1 . - -
Yi =5l %= 0(% — %) + 3,
te=1, 1<k<K,
yk =Gk, Tk =k 1<k<K, k#j

Goto Step 1.

Notethat inthe PEP, A = I and so there is aunique single-phase solution given
by y1 = 1and z1 = b. Inthis case the LO step (Step 1) need not be performed in
the first iteration and we can set (K*,¢*,Y™*) := (K, t,Y’). Theinitial value of the
phase class can be chosen arbitrarily or chosen to be the one with the lowest GFE
at the initial solution.

Step 4(ii) of the algorithm corresponds physically to splitting a phase (phase j)
into two phases (the modified phase j and phase K +1). Hence, after performingthis
step, thenumber of phasesisawaysincreased by one. Step 4(i) simply interchanges
one phase for another, keeping the number of phases constant or reducing it.

The GILO algorithm isillustrated in Figures 1 and 2 for the case where m =
n=1A=1Iandr ={V,L} (‘V’ for‘vapour’, ‘L’ for ‘liquid’). The dotted line
represents the nonsmooth function f,. Values of z3, =3, ©*, and xo obtained at
Steps 1 and 2 are shown. Let superscripts/ and [ + 1 refer respectively to iteration
number / and iteration number [ + 1. Here K* = K*™ = 2. At iteration I
(Figure 1), we have two liquid phases (tf = t’gl = L). The elimination step cannot
remove any phasesso (K,%,Y) = (K*,t*,Y*). The global step (Step 2) found a
vapour phase z} (t, = V). Since z, can be written as an affine combination of i}
and i} (i.e. (28) hasasolution), we do not add =}, asathird phase but rather simply
exchange phase 5 for phase z}, as described in Step 4(i). The local optimization
step (Step 1) will then yield the global solution corresponding to =3 ™, z3
3™ = L,andt3 ™ = V shown on Figure 2. Note that at each iteration we have
F(K*,£,Y*) = 0" (b), since F(K*,*,Y*) = X yi fiz (21), i (a}) = ©° (a}),
O* isafine, and b = . yiz} (or smply by Lemma3.2with K = 1, §; = 1, and
Z1 =0b).

jogo312.tex; 30/06/1998; 13:20; v.7; p.17



342 KEN McKINNON AND MARCEL MONGEAU

~0---0—o— fM fr.
F(K*, t+, Y*)
0 x% X, b x} 1
Figure 1. Local optimum and completed Gl step at iteration [.
f

F(K*, t+, Y*)

Figure 2. Global optimum at iteration ! + 1.
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THEOREM 4.2 (Convergence). The GILO algorithm converges to a global min-
imum of P in a finite number of steps, provided that P/ has a finite number of
distinct objective function values at KT points, for any 1 < K < m + 1 and any
terk,

Proof. We first show that every step of the algorithm is well defined. As noted
earlier P’ and hence P attain their infimum as a minimum. In Step O, pfes can
be used to yield a single-phase feasible solution if one exists, and otherwise prove
that the problem isinfeasible. i

Now consider Step 4. When (28) hasasolution {ay, } X, Step 4(i) will betaken.
Since there must exists a; > Owith1 < k < K, andsinceg, > 0,1< k < K
(EL in Step 1 removed redundant phases), 7 - iswell defined and strictly positive.
Next we show that the new solution given by Step 4(i) is feasible for P.
Flrstly, by (28) and by (16) using the fact that (K, . Y) isfeasible,

K
Zyk—Zyk—yKak + g = Zyk—yKZaHyK—l
k=1

Secondly, by (28) and by (15) using the fact that (K, #,Y) isfeasible,

K K
> GeAiy = Y (Tk — Ggon) ATk + G AS
k=1
K K
= UrAir — 05 Y ATy + G AT
k=1 k=1

=b— QR—A:L"Q + gf(AfO =b.

Thirdly, 9 > 0,1 < k < K, by construction, so the solution constructed in Step
4(i) is feasible for P, and so (K,t,Y’), which is obtained from it by dropping
phaseswith i, = 0, isalso feasiblefor P.

Now we show that the new solution, (K, t,Y"), givenin Step 4(ii) isfeasible for
P. Firstly, it is straightforward to verify that

K K K

SNouk=> Gk, and > ypAzp = JpAiy.

k=1 k=1 k=1 k=1
Wethen usethefeasibility of (K, #,Y). Secondly, =, € X, for § sufficiently small,
since X isopen. Finally, y, > Ofor1 <k < K

_We now show that if the algorithm terminatesin Step 3, then (K*,¢*,Y*) and

(K,t,Y) areglobal minimafor P. Notethat Y* isaKT point for PX~ and that the
O* defined in Step 3 is the same as that defined in Lemma 3.1. Since termination
occurred, fy(z) — ©*(z) > Ofor dl z € X, so by Theorem 2 (K*,¢*,Y™*)
is a global minimum for P. Since, by the EL construction, (K, 7, T) |sfeasble
Theorem 3 showsthat it is also optimal.
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Next we show that Step 4(i) yields astrict decreasein F'. Since termination did
not occur in Step 3, f;,(zo) < ©*(zo), so by definition of phase K, ft}{ (Tp) <
©*(Zy). Also by Lemma3.1, fe (z7) = ©*(x}) forall j € J*. By construction
inEL, for all k suchthat 1 < k < K, thereisaj € J* suchthat &), = z;, and by
definition & = &y, and #, = f;. Hence f; (&x) = ©* (&) for 1 < k < K. Hence
the new valuefor F' at the end of Step 4(i) is

F(K,t,Y) = F(K,1,Y), empty phases eliminated,

K
= >k fi, (&)
k=1

K

< > 9x©*(#;), paragraphabove,
k=1

= F(K*,t*,Y"), Lemma3.2.

For Step 4(ii), the proof of the strict decreasein F' can befound in the modification
of the proof of Theorem 3 of Jiang et al. (1995) that we described above for our
Theorem 3.1.

Since A has rank m the maximum value of M in Theorem 4.1 is m. Hence
Theorem 4.1 shows that the maximum number of phases which can be present
after the EL step is m + 1, and that this only occurs when the the convex hull
of {Az, : k € J*} has dimension m. It follows that in this case the vectors
{Azy : k € J*} span R™ so there must be a solution to (28). Hence Step 4(i) is
taken, which either keeps the same number of phases or decreasesit. In the other
case, Step 4(ii) increasesthe number of phasesonly by one, so the resulting number
of phasesin either caseis no more than m + 1. Theinitial feasible solution has no
more than m + 1 phases so every LO is aproblem with at most m + 1 phases, and
therefore the KT points found have no more that m + 1 phases. Step 4 forces a
strict reduction in the objective function and the next LO terminates at aKT point
with an objective no higher than at the start of the LO search. Hence the sequence
of KT points has strictly decreasing objective values. Since we are assuming that
there are afinite number of distinct function valuesat KT points for problemswith
m + 1 or fewer phases, it follows that the algorithm convergesin afinite number
of steps.

Finally we note that since A is of full rank a constraint qualification holds (see
Jing et a., 1995), so al local minima occur at KT points. Hence the algorithm
convergesto aglobal minimum. O

5. Implementation and computational results

In this section we make some observations related to the practical implementation
of the GILO agorithm, and we cite encouraging computational experiments.

jogo312.tex; 30/06/1998; 13:20; v.7; p.20



GILO ALGORITHM FOR CHEMICAL AND PHASE EQUILIBRIA 345

In the case where one phase classis knownto be modelled by aconvex function,
one can show that no more than one phase of this class needs to occur at a global
minimum of P. Moreover the GILO algorithm will not introduce more than one
phase of such aclass. This is because at the end of the LO step the tangent plane
{z : ©*(z) = 0} isatangent to all phase functions corresponding to phaseswhich
are present (Lemma 3.1), so the tangent lies below any such function which is
convex. The Gl step can therefore never find a point below the tangent for such a
phase class, so the Gl step can be simplified by ignoring any convex phase class
where a phase of that class already exists. Where a convex phase class could be
present becausethereis currently no phase of that class present, the phase class can
be dealt with separately within the Gl step by afast local minimization technique.

If the Gl procedure providesalower bound on its optimal objective value when
it terminates, then the following theorem can be used to obtain a lower bound on
the GFE.

THEOREM 5.1 (Lower Bound). Let © : R" — R be an affine function and let ©
be the optimal objective value of the LP problem

Plb(©):
© = min ©(2),
Zern
subjectto AZ = b,
Z > 0.

Assume that when the GI(©) procedure terminates, it provides a lower bound D
on its optimal objective value.
Thenfor all (K, t,Y) that arefeasible for P

F(K,t,Y)>©+D.
Inthe PEP, © = ©(b).
Proof. By the definition of D

fn(z) —O(z) >D foralze X andn € 7. (29)
Let (K,t,Y) beany feasible solution to P. Then

K
F(Katay) = Zykftk(xk)a

kKl

k=1

K K
= OY yrzx) + D, since Sy, = 1and O isaffine,
k=1 k=1
K
> 0+D, sneZ=> yuyisfeasiblefor PP(0).
k=1
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For the PEP there is a unique feasible point for P'°(©) given by Z = b, so
© = 0(b). 0

Note that the validity of the bounds provided by Theorem 5.1 does not rely on
any specia properties of ©. In particular it does not rely on the ©* provided by
LO being exact or indeed being of the form given in Lemma 3.1 for any « and
(. (However the bound is better if the LO step is exact.) The e-global optimality
results quoted in the next section use this bound.

Let ©T bethe affine function defined in Lemma 3.1 corresponding to the global
optimum (K, ¢+, Y1), Assume Z is optimal for P'°(@+) and let K = 1,41 =
1,21 = Z andt; € T bearbitrary. Then (K, ¢,Y") isfeasiblefor P andfrom Lemma
3.2it followsthat © = ©1(Z) = 101 (z1) = F(K*,tT, Y1), Alsoif GI(OT)
is completed and findsits global minimum, it has azero objectivevalue, so D = 0
in this case. Hence in this case the bound given by Theorem 5.1 is attained.

Figure 3 illustrates the lower bound (LB) implicitly given by the iterate,
(K*,t*,Y*), ©*, and o of Figure 1. Since LO isexact, e = —D in this case.

FK*, tx, Y*) |- PO DU

Figure 3. Lower bound yielded by the local optimum of Figure 1.

Results from Interval-GILO Implementations

McKinnon et al. (1996) describes an implementation of the GILO algorithm,
Interval-GILO, where the Gl global step uses branch and bound and interval
analysis. The Gl step is terminated whenever a point is found lying sufficiently
below the tangent plane. Encouraging results from this implementation and later
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improvements on it are summarized below. Full details can be found in Berner
et al. (1998) and McKinnon et al. (1996).

All theresultsreported for the Interval-GIL O implementations give CPU times
in seconds for runs on a Sun Sparc 5 70 MHz workstation. The number of local-
optimization iterations reported refers to the number of iterations needed for LO
step to converge. The number of global-optimization iterations correspondsto the
total number of times an interval has been divided in two in the branch-and-bound
interval-analysis process (see McKinnon et al., 1996).

McKinnon et al. (1996) describes the behaviour of Interval-GILO on three
instances of the PEP which are also studied in McDonald and Floudas (19953).
The NAG EO4UCF subroutine (sequential quadratic programming) was used for
the LO step. A summary of the resultsis given below. Table | reports numbers of
iterations and CPU times required to obtain convergence.

Tablel. Resultsfor problems 1, 2a, and 2b

Problem1 Problem2a Problem2b
Initial phase Liquid Vapour Vapour
iter s iter s iter S

Istglobd step 8 005 2 004 269 099

1st local step 9 007 10 008 11 010
2ndglobal step 46 0.16 2 004 297 142
2nd local step 33 022
3rd global step 436 311
Entire program 0.38 3.65 2.60

Problem 1 corresponds to the Illustrative Example (n-Butyl-acetate, Water)
of McDonald and Floudas (19958) (ns = 2 and 7 = {L}). Started from the
only feasible point, which corresponds to a single liquid phase, Interval-GILO
performed a Gl step which yielded asecond liquid phases, then aL O step, and then
a second Gl which proved that the solution found in the LO step was e-globally
optimal, wheree = 10~1° (i.e. by Theorem 5.1, the GFE at the solution isknown to
bewithin e of the global minimum objective value). The global minimum found by
the algorithm therefore corresponds to two liquid phases. McDonald and Floudas
(1995a) reports a CPU time of 1.23 s on a Hewlett Packard 9000/730 to converge
to the same solution, with precision e = 5 x 10~*. (In McDonald and Floudas
(1995a) each problem is solved as a single global optimization problem using the
GOP method with the optimal number of phases assumed to be known.)

Problems 2a and 2b (Benzene, Water, Acetonitrile) (ns = 3and 7 = {L,V'})
originate from Castillo and Grossmann (1981) and correspond to Example 6 of
McDonald and Floudas (1995a). These have Liquid—Liquid—Vapour and Liquid—
Vapour Equilibria respectively. Solutions were found to e-global optimality with
e < 1.2 x 10~°. These results again compare favourably with thosein McDonald
and Floudas (1995a), which reports 766 and 118 s of CPU time respectively for
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Problem 2a and Problem 2b, to converge to the same solution. When McDonald
and Floudas assumethat it is known that there is one vapour phase and one liquid
phase at the global optimum of Problem 2b, their algorithm then requires 0.88 s of
CPU timeto converge with e = 10~*. Note also that a recent paper McDonald and
Floudas (1996) reports a CPU time of 0.76 s to verify the global optimality of the
globa minimum of Problem 2a.

ResultsfromtheInterval-GIL O method on moredifficult problemsaredescribed
inBerner et al. (1998) and aresummarizedin Tablell. Theseproblemsare modelled
using the UNIFAC equation and involve 4, 5 and 6 of the substances (Ethylene
Glycol, Dodecanol, Nitromethane, Water, Benzene, n-Butanol), and have up to
4 phases at equilibrium. The problems are solved to e-global optimality with
¢ < 1079 in all cases. In this implementation the LO step operates in a reduced
space and uses an unconstrained modified Newton algorithm. Problem 3isthe most
difficult problem described in McDonald and Floudas (1996), where it took 1960 s
to obtain and verify the global optimum, compared with 71 s by the Interval-GILO
method.

Tablell. Resultsfor problems 3, 4, and 5

Problem 3 Problem 4 Problem 5
Initial phase Liquid Liquid Liquid

iter S iter S iter s
1st global step® 6 003 8 0.06 8 0.08
1st local step 8 004 6 0.05 5 0.05
2nd global step 15 0.08 856 7.18 5888 87.20
2nd local step 129 082 159 1.78 17 0.32
3rdglobal step 3016 15.65 57450 667.36 1069179 19983.08
3rd locdl step 5 007

dthglobd step 7975 54.22

Entire program 71.05 677.37 20071.41

*Vapour phase introduced by alocal search.

Using the current version of the Interval-GILO method the times for Problems
1, 2a, 2b, 3, 4 and 5 are reduced to 0.26, 1.39, 1.16, 53.97, 509.54, 14227.49 s
respectively.

The interval Gl step of the GILO algorithm is suitable for parallel processing,
and in Berner et al. (1998) a parallel implementation is described which achieves
speedups of 10 on a network of workstations for Problems 3, 4 and 5.

6. Conclusions

In this paper, we have extended the necessary and sufficient condition for global
optimality based on the tangent-plane criterion to the case involving multiple-
phase-class models. Moreover we have presented an algorithmic approach that
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reduces the global optimization problem of minimizing the Gibbs free energy in
the multi-phase chemical and phase equilibrium problem into a finite sequence of
local optimization (LO) steps involving no more that m,;, phases, where my, isthe
number of independent balance constraints, and global optimization (Gl) stepsin
the smaller space of (ns — 1) dimensions, where n is the number of substances
present. The Gl step uses the tangent-plane criterion to determine whether the
current solution is optimal, and, if it isnot, it finds an improved feasible solution
either with the same number or fewer phases, or with one added phase. It aso
determines what class of phaseisto be added.

The major advantages of the method are that the global optimization steps are
in amuch lower dimensional space than the whole problem, and that the numerical
difficulties occur in the local optimization step, for which well developed methods
are available.

The generic GILO algorithm can be used with different global optimization
methods. A summary has been given in this paper of good numerical results
reported in Berner et al. (1998) and McKinnon et al. (1996) on several instances
of the GFE minimization problem with an interval-analysisimplementation for the
global step of the GILO algorithm. Such computational experiments support the
theory.

There s still some scope for improving the current interval-analysis-based Gl
step, and it would also be of interest to test other global optimization methods
for the Gl step, such as that described in McDonald and Floudas (1994a, 1995h)
and used for the stability test of the GLOPEQ package in McDonald and Floudas
(1996).

Future work should attempt to solve the numerically difficult local optimization
subproblems moreefficiently, for example aong thelines proposed by Trangenstein
(1987) for phase equilibrium problems involving two phases. A more accurate
solution to the LO problem would produce even more accurate e-global optimal
error bounds.

Sometimes a phase-classmodel may only be valid over part of the composition
space. For example, whenitisknown that asubstance can only occur in aphasewith
very low concentration, it isoften agood approximation and iseasier numerically to
introduce a phase-classmodel which doesnot contain that substance. Thissituation
is described by a multiple-phase-class model with specia properties Smith et al.
(1993) and requires further study.
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